Size in 2-dimensional elementary topos theory

Calum Hughes

Masaryk University 2025

Outline

- Motivation
- 2 Axioms
- 3 Properties
- 4 Conclusions

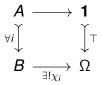
Definition (Lawvere-Tierney)

An *elementary* topos is a cartesian closed category & with finite limits and a subobject classifier.

Definition (Lawvere-Tierney)

An *elementary* topos is a cartesian closed category & with finite limits and a subobject classifier.

A *subobject classifier* is a monomorphism $\top : \mathbf{1} \rightarrowtail \Omega$ such that for any other monomorphism $i : A \rightarrowtail B$ there exists a unique $\chi_i : B \to \Omega$ such that the following diagram is a pullback.



Definition (Lawvere-Tierney)

An elementary topos is a cartesian closed category $\mathscr E$ with finite limits and a subobject classifier.

Equiv. for all $B \in \mathcal{E}$, pulling back along $\top : \mathbf{1} \rightarrow \Omega$ is a bijection:

$$\mathscr{E}(B,\Omega) \stackrel{\cong}{\longrightarrow} \mathsf{Sub}(B)$$

Definition (Lawvere-Tierney)

An elementary topos is a cartesian closed category $\mathscr E$ with finite limits and a subobject classifier.

Equiv. for all $B \in \mathcal{E}$, pulling back along $\top : \mathbf{1} \rightarrow \Omega$ is a bijection:

$$\mathscr{E}(B,\Omega) \stackrel{\cong}{\longrightarrow} \mathsf{Sub}(B)$$

Key example: Set

Definition (Weber)

An elementary (2, 1)-topos is a cartesian closed (2, 1)-category \mathcal{K} with finite limits and a discrete optibration classifier.

A discrete opfibration classifier is a discrete opfibration $p: S_* \rightarrow S$ such that for all $X \in \mathcal{H}$, pulling back along $p: S_* \rightarrow S$ is fully faithful:

$$\mathscr{K}(X,\mathcal{S}) \xrightarrow{\text{f.f.}} \mathsf{DopFib}(X)$$

GPD the (2, 1)-category of large groupoids

GPD the (2, 1)-category of large groupoids

finite limits √

GPD the (2, 1)-category of large groupoids

- finite limits √
- discrete opfib classifier √ (i.e Set_{*} → Set)

GPD the (2, 1)-category of large groupoids

- finite limits √
- discrete opfib classifier √ (i.e Set_{*} → Set)
- cartesian closed X

GPD the (2, 1)-category of large groupoids

- finite limits √
- discrete opfib classifier √ (i.e Set_{*} → Set)
- cartesian closed X

 $\mathbf{GPD}_{\boldsymbol{\mu}}$ the (2, 1)-category of $\boldsymbol{\mu}\text{-small}$ groupoids for some $\boldsymbol{\mu}>\lambda$

- finite limits √
- artesian closed √
- discrete opfib classifier √ (i.e Set_{λ*} → Set_λ)

- **GPD** the (2, 1)-category of large groupoids
 - finite limits √
 - discrete opfib classifier √ (i.e Set_{*} → Set)
 - cartesian closed X

 $\mathbf{GPD}_{\boldsymbol{\mu}}$ the (2, 1)-category of $\boldsymbol{\mu}\text{-small}$ groupoids for some $\boldsymbol{\mu}>\lambda$

- finite limits √
- cartesian closed √
- discrete opfib classifier √ (i.e Set_{λ*} → Set_λ)

Gpd the (2, 1)-category of small groupoids:

- finite limits √
- cartesian closed √
- discrete opfib classifier \checkmark (i.e. $\top \rightarrow \{\bot, \top\}$)

Logic in an elementary topos

	1-cats	(2, 1)-cats
Object	elementary topos	
internal logic	0 dimensional MLTT	
Key example	Set	

Logic in an elementary topos

	1-cats	(2, 1)-cats
Object	elementary topos	Weber (2, 1)-topos
internal logic	0 dimensional MLTT	?
Key example	Set	?

Von Neumann-Bernays-Gödel class theory:

Class has:

• objects: $\{x \text{ a set} : \phi(x) \text{ is true for } \phi \text{ a formula in FOL}\}$

morphims: class functions

Von Neumann-Bernays-Gödel class theory:

Class has:

- objects: $\{x \text{ a set} : \phi(x) \text{ is true for } \phi \text{ a formula in FOL}\}$
- morphims: class functions

Properties:

• Not cartesian closed: [X, Y] wants to be $\{F \subseteq X \times Y | ...\}$ but F is not neccessarily a set.

Von Neumann-Bernays-Gödel class theory:

Class has:

- objects: $\{x \text{ a set} : \phi(x) \text{ is true for } \phi \text{ a formula in FOL}\}$
- morphims: class functions

- Not cartesian closed: [X, Y] wants to be $\{F \subseteq X \times Y | ...\}$ but F is not neccessarily a set.
- BUT if X is itself a set, then [X, Y] exists (|F| = |X|)

Von Neumann-Bernays-Gödel class theory:

Class has:

- objects: $\{x \text{ a set} : \phi(x) \text{ is true for } \phi \text{ a formula in FOL}\}$
- morphims: class functions

- Not cartesian closed: [X, Y] wants to be $\{F \subseteq X \times Y | ...\}$ but F is not neccessarily a set.
- BUT if X is itself a set, then [X, Y] exists (|F| = |X|)
- So $\mathcal{P}(X) := [X, 2]$ exists if and only if X is a set.

Von Neumann-Bernays-Gödel class theory:

Class has:

- objects: $\{x \text{ a set} : \phi(x) \text{ is true for } \phi \text{ a formula in FOL}\}$
- morphims: class functions

- Not cartesian closed: [X, Y] wants to be $\{F \subseteq X \times Y | ...\}$ but F is not neccessarily a set.
- BUT if X is itself a set, then [X, Y] exists (|F| = |X|)
- So $\mathcal{P}(X) := [X, 2]$ exists if and only if X is a set.
- Subobject classifier

Von Neumann-Bernays-Gödel class theory:

Class has:

- objects: $\{x \text{ a set} : \phi(x) \text{ is true for } \phi \text{ a formula in FOL}\}$
- morphims: class functions

- Not cartesian closed: [X, Y] wants to be $\{F \subseteq X \times Y | ...\}$ but F is not neccessarily a set.
- BUT if X is itself a set, then [X, Y] exists (|F| = |X|)
- So $\mathcal{P}(X) := [X, 2]$ exists if and only if X is a set.
- Subobject classifier
- It is regular, but not exact.

Von Neumann-Bernays-Gödel class theory:

Class has:

- objects: $\{x \text{ a set} : \phi(x) \text{ is true for } \phi \text{ a formula in FOL}\}$
- morphims: class functions

- Not cartesian closed: [X, Y] wants to be $\{F \subseteq X \times Y | ...\}$ but F is not neccessarily a set.
- BUT if X is itself a set, then [X, Y] exists (|F| = |X|)
- So $\mathcal{P}(X) := [X, 2]$ exists if and only if X is a set.
- Subobject classifier
- It is regular, but not exact.

Von Neumann-Bernays-Gödel class theory:

Class has:

- objects: $\{x \text{ a set} : \phi(x) \text{ is true for } \phi \text{ a formula in FOL}\}$
- morphims: class functions

Properties:

- Not cartesian closed: [X, Y] wants to be $\{F \subseteq X \times Y | ...\}$ but F is not neccessarily a set.
- BUT if X is itself a set, then [X, Y] exists (|F| = |X|)
- So $\mathcal{P}(X) := [X, 2]$ exists if and only if X is a set.
- Subobject classifier
- It is regular, but not exact.

We define GPD := Gpd(Class).

Class categories

	1-cats	(2, 1)-cats
Object	class categories	
internal logic	small obs: 0D MLTT	
Key example	Class	

Definition (Joyal-Moerdijk)

A *class category* is a pair $(\mathcal{C}, \mathcal{S})$ of a category and a class of maps satisfying some axioms.

Class categories

	1-cats	(2, 1)-cats
Object	class categories	class (2,1)-categories
internal logic	small obs: 0D MLTT	small obs: 1D MLTT
Key example	Class	GPD

Theorem

Let $(\mathcal{K}, \mathcal{S})$ be a class (2,1)-category. Then the small objects form a model of 1-dimensional MLTT.

Outline

- Motivation
- 2 Axioms
- 3 Properties
- 4 Conclusions

Cateads

Definition (Bourne-Penon, Bourke)

For a (2,1)-category \mathcal{K} , a *catead* is

$$C_1 imes_{C_0} C_1 \xrightarrow[
ho_2]{comp} C_1 \xrightarrow[tgt]{src} C_0$$

such that (srs, tgt) : $C_1 \rightarrow C_0 \times C_0$ is a discrete opfibration. We call its 2-colimit a *codescent object*.

Codescent morphisms are a (2,1)-dimensional analogue of a regular epimorphism in a 1-category.

Examples

 A catead in **Gpd** is some form of fibrant double groupoid.

Examples

- A catead in **Gpd** is some form of fibrant double groupoid.
- For any $X \in \mathbf{Gpd}$,

$$X_1 \times_{X_0} X_1 \xrightarrow{\begin{array}{c} p_1 \\ m \end{array}} X_1 \xrightarrow{\begin{array}{c} d_1 \\ i \end{array}} X_0$$

is a catead made of discrete objects. It's codescent object is $\ensuremath{\mathbb{X}}$.

Examples

- A catead in **Gpd** is some form of fibrant double groupoid.
- For any $X \in \mathbf{Gpd}$,

$$X_1 \times_{X_0} X_1 \xrightarrow{p_1 \atop m} X_1 \xrightarrow{d_1 \atop i} X_0$$

is a catead made of discrete objects. It's codescent object is \mathbb{X} .

 In Gpd, the codescent morphisms are precisely the bijective-on-objects functors.

Exactness

Given $f: X \to Y$

$$f\downarrow f\downarrow f\xrightarrow{\stackrel{p_1}{\longrightarrow}} f\downarrow f\xrightarrow{\stackrel{d_1}{\longleftarrow}} X\xrightarrow{\stackrel{q}{\longrightarrow}} C$$

Exactness

Given $f: X \to Y$

$$f\downarrow f\downarrow f\xrightarrow{\stackrel{p_1}{\longrightarrow}} f\downarrow f\xrightarrow{\stackrel{d_1}{\longleftarrow}} X\xrightarrow{\stackrel{q}{\longrightarrow}} C$$

Definition (Bourke-Garner)

A (2,1)-category with finite limits is called *BO-regular* when codescent objects of cateads exist and codescent morphisms are effective and stable under pullback, and whenever f:A woheadrightarrow B is a codescent morphism, so is $\delta_f:A woheadrightarrow A imes_B A$.

It is called BO-exact if cateads are effective.

• Gpd is BO-exact.

- Gpd is BO-exact.
- For any $\mathscr E$ with pullbacks, $\mathbf{Gpd}(\mathscr E)$ is BO-exact.

- Gpd is BO-exact.
- For any $\mathscr E$ with pullbacks, $\mathbf{Gpd}(\mathscr E)$ is BO-exact.
- GPD is BO-exact.

- Gpd is BO-exact.
- For any $\mathscr E$ with pullbacks, $\mathbf{Gpd}(\mathscr E)$ is BO-exact.
- GPD is BO-exact.
- Set thought of as a locally discrete (2, 1)-category is not BO-exact (the diagonal of a regular epimorphism is rarely a regular epimorphism).

Let \mathcal{K} be an BO-exact (2,1)-category.

Consider the following axioms:

Let \mathcal{K} be an BO-exact (2,1)-category.

Consider the following axioms:

- **①** Discrete objects in $\mathcal K$ are projective.
- $\ensuremath{\mathfrak{D}}$ $\ensuremath{\mathcal{H}}$ has enough projectives.

 $Y \in \mathcal{K}$ is discrete if

$$\mathbb{X} \xrightarrow{f \atop g} Y \implies f = g \text{ and } \phi = 1_f$$

Y is called projective if

Let \mathcal{K} be an BO-exact (2,1)-category.

Consider the following axioms:

- **①** Discrete objects in $\mathcal K$ are projective.

$$P \twoheadrightarrow \mathbb{Y}$$

Let \mathcal{K} be an BO-exact (2,1)-category.

Consider the following axioms:

- **1** Discrete objects in \mathcal{K} are projective.
- $\ensuremath{\mathbf{2}}$ $\ensuremath{\mathcal{H}}$ has enough projectives.

Theorem (Carboni-Vitale)

An exact 1-category is an exact completion if and only if it has enough projectives. In this case, it is the exact completion of its projective objects.

Let \mathcal{K} be an BO-exact (2,1)-category.

Consider the following axioms:

- **1** Discrete objects in \mathcal{K} are projective.

Theorem (Bourke-Garner)

- $\mathcal{E} \mapsto \mathbf{Gpd}(\mathcal{E})$ is the BO-exact completion of \mathcal{E} .
- An BO-exact (2,1)-category is a BO-exact completion of a 1-category if and only if it has enough projectives and discrete objects are projective. In this case, it is the BO-exact completion of its discrete objects.

i.e. \mathcal{K} satisfies (1)-(2) $\iff \mathcal{K} \simeq \mathbf{Gpd}(\mathbf{Disc}(\mathcal{K}))$

Let $\mathcal K$ be a lextensive (2,1)-category and $\mathcal S$ a class of discrete optibrations. We call $(\mathcal K,\mathcal S)$ a *pre-class* (2,1)-category.

Let $\mathcal K$ be a lextensive (2,1)-category and $\mathcal S$ a class of discrete optibrations. We call $(\mathcal K,\mathcal S)$ a *pre-class* (2,1)-category.

We call a discrete object $X \in \mathbf{Disc}(\mathcal{K})$ *small* if $!: X \to \mathbf{1}$ is in \mathcal{S} .

Let $\mathcal K$ be a lextensive (2,1)-category and $\mathcal S$ a class of discrete opfibrations. We call $(\mathcal K,\mathcal S)$ a *pre-class* (2,1)-category.

We call a discrete object $X \in \mathbf{Disc}(\mathcal{K})$ *small* if $!: X \to \mathbf{1}$ is in \mathcal{S} .

We call a general object $\mathbb{X} \in \mathcal{H}$ *small* if there exists a small discrete object and a codescent morphism $q: X \twoheadrightarrow \mathbb{X}$, such that $(s,t): q \downarrow q \rightarrow X \times X$ is in \mathscr{S} .

Let $\mathcal K$ be a lextensive (2,1)-category and $\mathcal S$ a class of discrete opfibrations. We call $(\mathcal K,\mathcal S)$ a *pre-class* (2,1)-category.

We call a discrete object $X \in \mathbf{Disc}(\mathcal{K})$ *small* if $!: X \to \mathbf{1}$ is in \mathcal{S} .

We call a general object $\mathbb{X} \in \mathcal{K}$ *small* if there exists a small discrete object and a codescent morphism $q: X \twoheadrightarrow \mathbb{X}$, such that $(s,t): q \downarrow q \to X \times X$ is in \mathscr{S} . Define the full sub-(2, 1)-category of small objects by $\mathscr{K}_{\mathsf{small}}$.

Let $(\mathcal{K}, \mathcal{S})$ be a pre-class (2, 1)-category. Consider:

- Replacement.
- Stability.
- 3 $0 \rightarrow 1$ and $1 + 1 \rightarrow 1$ belong to \mathcal{S} .
- Sums.
- Exponentiality.
- Representability.
- Cancellability.
- Small NNO.
- Small BO-exactness.
- Projectivity of small discrete objects.

Any isomorphism is in $\mathscr S$ and $\mathscr S$ is closed under composition.

Let $(\mathcal{K}, \mathcal{S})$ be a pre-class (2, 1)-category. Consider:

- Replacement.
- Stability.
- $0 \rightarrow 1$ and $1 + 1 \rightarrow 1$ belong to \mathcal{S} .
- Sums.
- Exponentiality.
- Representability.
- Cancellability.
- Small NNO.
- Small BO-exactness.
- Projectivity of small discrete objects.

In any strict (2,1)-pullback square

$$\begin{array}{ccc}
A & \longrightarrow & X \\
G \downarrow & \downarrow & \downarrow F \\
B & \longrightarrow & Y
\end{array}$$

If $F \in \mathcal{S}$ then $G \in \mathcal{S}$.

- Replacement.
- Stability.
- 3 $0 \rightarrow 1$ and $1 + 1 \rightarrow 1$ belong to \mathcal{S} .
- Sums.
- Exponentiality.
- Representability.
- Cancellability.
- Small NNO.
- Small BO-exactness.
- Projectivity of small discrete objects.

Let $(\mathcal{K}, \mathcal{S})$ be a pre-class (2, 1)-category. Consider:

- Replacement.
- Stability.
- 3 $0 \rightarrow 1$ and $1 + 1 \rightarrow 1$ belong to \mathcal{S} .
- Sums.
- Exponentiality.
- Representability.
- Cancellability.
- Small NNO.
- Small BO-exactness.
- Projectivity of small discrete objects.

If $X \to Y$ and $X' \to Y'$ belong to $\mathcal S$ then so does $X + X' \to Y + Y'$.

Let $(\mathcal{K}, \mathcal{S})$ be a pre-class (2, 1)-category. Consider:

- Replacement.
- Stability.
- $0 \rightarrow 1$ and $1 + 1 \rightarrow 1$ belong to \mathcal{S} .
- Sums.
- Exponentiality.
- Representability.
- Cancellability.
- Small NNO.
- Small BO-exactness.
- Projectivity of small discrete objects.

Every map in $\mathcal S$ is exponentiable

Let $(\mathcal{K}, \mathcal{S})$ be a pre-class (2, 1)-category. Consider:

- Replacement.
- Stability.
- 3 $0 \rightarrow 1$ and $1 + 1 \rightarrow 1$ belong to \mathcal{S} .
- Sums.
- Exponentiality.
- Representability.
- Cancellability.
- Small NNO.
- Small BO-exactness.
- Projectivity of small discrete objects.

There is a small discrete opfibration classifier $p: S_* \rightarrow S$:

$$\mathscr{K}(\mathit{X}, \mathit{S}) \stackrel{\simeq}{\longrightarrow} \mathsf{DopFib}_{\mathscr{S}}(\mathit{X})$$

Let $(\mathcal{K}, \mathcal{S})$ be a pre-class (2, 1)-category. Consider:

- Replacement.
- Stability.
- 3 $0 \rightarrow 1$ and $1 + 1 \rightarrow 1$ belong to \mathcal{S} .
- Sums.
- Exponentiality.
- Representability.
- Cancellability.
- Small NNO.
- Small BO-exactness.
- Projectivity of small discrete objects.

Let $F: X \to Y$ and $G: Y \to Z$ be discrete opfibrations. If $GF \in \mathcal{S}$ then $F \in \mathcal{S}$.

- Replacement.
- Stability.
- 3 $0 \rightarrow 1$ and $1 + 1 \rightarrow 1$ belong to \mathcal{S} .
- Sums.
- Exponentiality.
- Representability.
- Cancellability.
- Small NNO.
- Small BO-exactness.
- Projectivity of small discrete objects.

- Replacement.
- Stability.
- 3 $0 \rightarrow 1$ and $1 + 1 \rightarrow 1$ belong to \mathcal{S} .
- Sums.
- Exponentiality.
- Representability.
- Cancellability.
- Small NNO.
- Small BO-exactness.
- Projectivity of small discrete objects.

- Replacement.
- Stability.
- 3 $0 \rightarrow 1$ and $1 + 1 \rightarrow 1$ belong to \mathcal{S} .
- Sums.
- Exponentiality.
- Representability.
- Cancellability.
- Small NNO.
- Small BO-exactness.
- Projectivity of small discrete objects.

Let $(\mathcal{K}, \mathcal{S})$ be a pre-class (2,1)-category. Consider:

- Replacement.
- Stability.
- 3 $0 \rightarrow 1$ and $1 + 1 \rightarrow 1$ belong to \mathcal{S} .
- Sums.
- Exponentiality.
- Representability.
- Cancellability.
- Small NNO.
- Small BO-exactness.
- Projectivity of small discrete objects.

Definition

If $(\mathcal{K}, \mathcal{S})$ satisfies 1-10, we call it a *class* (2, 1)-*category.*

${\mathscr K}$	\mathscr{K}_{small}	\mathcal{S}
GPD	Gpd	Set-sized fibres

${\mathscr K}$	\mathscr{K}_{small}	\mathcal{S}
GPD	Gpd	Set-sized fibres
GPD_{μ}	Gpd_λ	λ -small fibres

${\mathscr K}$	\mathcal{K}_{small}	\mathscr{S}
GPD	Gpd	Set-sized fibres
GPD_{μ}	Gpd_λ	λ -small fibres
Gpd	Subterminals	discrete monos

${\mathscr K}$	\mathcal{K}_{small}	\mathcal{S}
GPD	Gpd	Set-sized fibres
GPD_{μ}	Gpd_λ	λ -small fibres
Gpd	Subterminals	discrete monos
$[\mathscr{A}^{op},GPD]$	[pointwise Set -sized

${\mathscr K}$	\mathcal{K}_{small}	\mathscr{S}
GPD	Gpd	Set-sized fibres
GPD_{μ}	Gpd_λ	λ -small fibres
Gpd	Subterminals	discrete monos
$[\mathscr{A}^{op},GPD]$	[ℐ ^{op} , Gpd]	pointwise Set -sized
${\mathcal H}$ a stack	\mathcal{K}_{small} a small stack	as above

Examples II

Groupoids internal to Zwanziger's stratified topoi:

$$\mathcal{E}_0 \hookrightarrow \mathcal{E}_1 \hookrightarrow \dots$$

Then

 $\mathbf{Gpd}(\mathscr{E}_1)$ is a class (2,1)-category with $\mathscr S$ consisting of those discrete optibrations that came from $\mathscr E_0$.

Examples II

Groupoids internal to Zwanziger's stratified topoi:

$$\mathcal{E}_0 \hookrightarrow \mathcal{E}_1 \hookrightarrow \dots$$

Then

 $\mathbf{Gpd}(\mathscr{E}_1)$ is a class (2,1)-category with $\mathscr S$ consisting of those discrete optibrations that came from $\mathscr E_0$.

This abstracts taking groupoids in $\mathbf{Set}_{\lambda} \hookrightarrow \mathbf{Set}_{\mu}$.

Outline

- Motivation
- 2 Axioms
- Properties
- 4 Conclusions

Let $(\mathcal{K}, \mathcal{S})$ be a class (2, 1)-category.

• for $\mathbb{X} \in \mathcal{K}_{small}$, $[\mathbb{X}, \mathbb{Y}]$ exists.

- for $\mathbb{X} \in \mathcal{K}_{small}$, $[\mathbb{X}, \mathbb{Y}]$ exists.
- ullet In particular, for $\mathbb X$ small, we have presheaves $[\mathbb X,\mathcal S]$

- for $\mathbb{X} \in \mathcal{K}_{small}$, $[\mathbb{X}, \mathbb{Y}]$ exists.
- \bullet In particular, for $\mathbb X$ small, we have presheaves $[\mathbb X,\mathcal S]$
- ullet There is a Yoneda lemma for ${\mathcal K}$ (cf. (Weber, Street)).

- for $\mathbb{X} \in \mathcal{K}_{small}$, $[\mathbb{X}, \mathbb{Y}]$ exists.
- ullet In particular, for $\mathbb X$ small, we have presheaves $[\mathbb X,\mathcal S]$
- There is a Yoneda lemma for \mathcal{K} (cf. (Weber, Street)).
- $\mathcal{H}_{\text{small}}$ is cartesian closed.

- for $\mathbb{X} \in \mathcal{H}_{small}$, $[\mathbb{X}, \mathbb{Y}]$ exists.
- ullet In particular, for $\mathbb X$ small, we have presheaves $[\mathbb X,\mathcal S]$
- There is a Yoneda lemma for \mathcal{K} (cf. (Weber, Street)).
- \mathcal{K}_{small} is cartesian closed.
- there exists a small object 2 ⊙ 1.

- for $\mathbb{X} \in \mathcal{K}_{small}$, $[\mathbb{X}, \mathbb{Y}]$ exists.
- \bullet In particular, for $\mathbb X$ small, we have presheaves $[\mathbb X, \mathcal S]$
- There is a Yoneda lemma for \mathcal{K} (cf. (Weber, Street)).
- \mathcal{K}_{small} is cartesian closed.
- there exists a small object 2 ⊙ 1.
- $\mathcal{K}_{\text{small}}$ is extensive.

- for $\mathbb{X} \in \mathcal{K}_{small}$, $[\mathbb{X}, \mathbb{Y}]$ exists.
- \bullet In particular, for $\mathbb X$ small, we have presheaves $[\mathbb X, \mathcal S]$
- ullet There is a Yoneda lemma for ${\mathcal K}$ (cf. (Weber, Street)).
- \mathcal{H}_{small} is cartesian closed.
- there exists a small object 2 ⊙ 1.
- $\mathcal{K}_{\text{small}}$ is extensive.
- $\mathcal{K}_{\text{small}}$ is finitely (co)complete.

Let $(\mathcal{K}, \mathcal{S})$ be a class (2, 1)-category.

Theorem

The (2,1)-category $\mathcal{K}_{small} \simeq \mathbf{Gpd}(\mathcal{E})$ for $\mathcal{E} := \mathbf{Disc}(\mathcal{K})$. Moreover, \mathcal{E} is a locally cartesian closed, extensive category with a natural numbers object.

The (2,1)-equivalence of this follows from the characterisation of (2,1)-categories of the form $\mathbf{Gpd}(\mathscr{E})$.

Let $(\mathcal{K}, \mathcal{S})$ be a class (2, 1)-category.

Theorem

The (2,1)-category $\mathcal{K}_{small} \simeq \mathbf{Gpd}(\mathscr{E})$ for $\mathscr{E} := \mathbf{Disc}(\mathcal{K})$. Moreover, \mathscr{E} is a locally cartesian closed, extensive category with a natural numbers object.

The (2,1)-equivalence of this follows from the characterisation of (2,1)-categories of the form $\mathbf{Gpd}(\mathscr{E})$.

Theorem

 \mathcal{K}_{small} is a model of 1-dimensional MLTT.

The proof is an internal version of Hofmann and Streicher's Groupoid model of type theory.

Outline

- Motivation
- 2 Axioms
- 3 Properties
- 4 Conclusions

Extra axioms

Let $(\mathcal{K}, \mathcal{S})$ be a class (2, 1)-category.

Theorem (cf. Helfer)

Let $(\mathcal{K}, \mathcal{S})$ be a class (2,1)-category with one extra axiom. Then the classifying object S is an internal 1-topos.

Or in a different direction:

Theorem

Let $(\mathcal{K}, \mathcal{S})$ be a class (2,1)-category with three extra axioms. Then $\mathbf{Disc}(\mathcal{K}_{small})$ is a model of the elementary theory of the category of sets and so \mathcal{K} has the same logical power as ZFC.

Further work

 In one dimensions, class categories give a way to see ZF-sets as the algebras for a polynomial endofunctor. Can we do this in 2-dimensions?

Further work

- In one dimensions, class categories give a way to see ZF-sets as the algebras for a polynomial endofunctor. Can we do this in 2-dimensions?
- Properties of $\mathbf{Gpd}(\mathbf{PAsm}_A)$ an \mathcal{F}_{BO} -effective topos?

Further work

- In one dimensions, class categories give a way to see ZF-sets as the algebras for a polynomial endofunctor. Can we do this in 2-dimensions?
- Properties of $\mathbf{Gpd}(\mathbf{PAsm}_A)$ an \mathcal{F}_{BO} -effective topos?
- Bicategorical version... $(\mathcal{K}, \mathcal{S})$ where \mathcal{K} a bicategory and \mathcal{S} is a class of setoidal opfibrations.

Summary

	1-cats	(2,1)-cats
Object	class categories	class (2,1)-categories
internal logic	small obs: 0D MLTT	small obs: 1D MLTT
Key example	Class	GPD

Adding axioms to a class (2,1)-category, we can give a (2,1)-categorical description of a logic which is as powerful as ZFC.

References I

- John Bourke, Codescent objects in 2-dimensional universal algebra, PhD thesis, University of Sydney 2010.
- John Bourke and Richard Garner, Two-dimensional regularity and exactness, Journal of Pure and Applied Algebra, 218 (7), pp. 1346–1371, 2014.
- Calum Hughes and Adrian Miranda, The elementary theory of the 2-category of small categories, Theory and Applications of Categories, Vol. 43, 2025, No. 8, pp 196-242.
- Calum Hughes and Adrian Miranda, Colimits of internal categories, preprint, 2025.
- Calum Hughes, The algebraic internal groupoidal model of type theory, preprint, 2025.

References II

- Andrè Joyal, leke Moerdijk, Algebraic set theory, Vol. 220. Cambridge University Press, 1995.
- Algebraic set theory library: https://www.phil.cmu.edu/projects/ast/