The Dold-Kan Correspondence

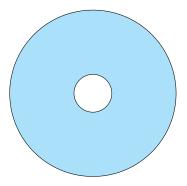
Calum Hughes

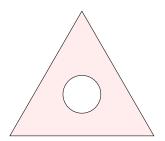
School of Mathematics and Statistics, University of Sheffield

4th May 2022

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

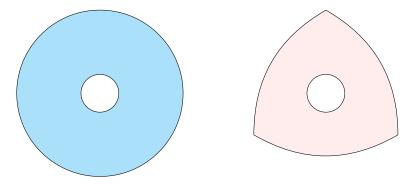
Are these two shapes the same?



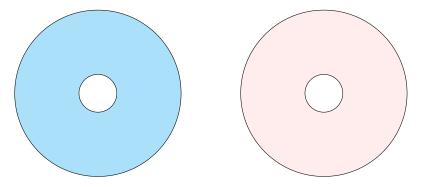


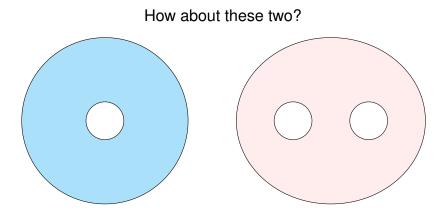
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

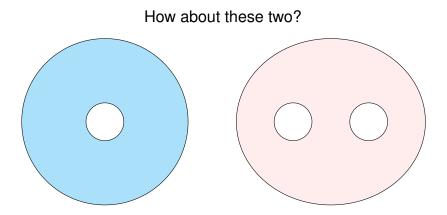
Are these two shapes the same?



Are these two shapes the same?







How would we go about proving that they are not?

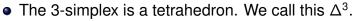
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

The aim of algebraic topology is to translate topological questions into algebraic ones.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

We use simplices as 'building blocks'. These can be thought of as *n*-dimensional triangles.

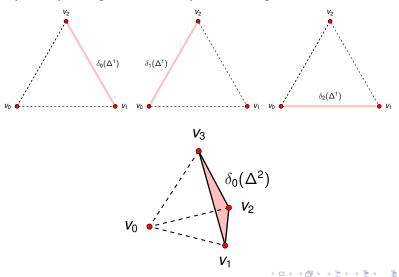
- A 0-simplex is a point. We call this Δ^0 .
- The 1-simplex is a line. We call this Δ^1 .
- The 2-simplex is a triangle. We call this Δ^2 .



• and so on up to higher dimensions...

Face maps

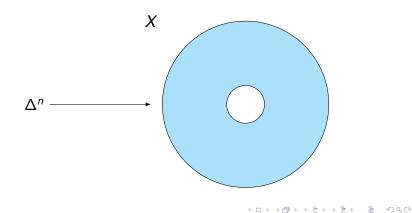
We can consider maps onto the faces of simplices. These maps help us "glue" the shape back together.



Sac

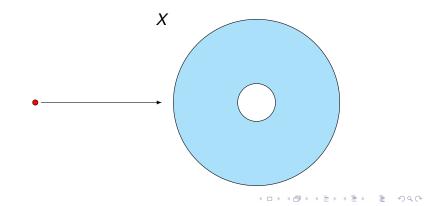
Let X be a topological space. Consider the set:

 $S_n X = \{ u : \Delta^n \to X : u \text{ is continuous} \}$



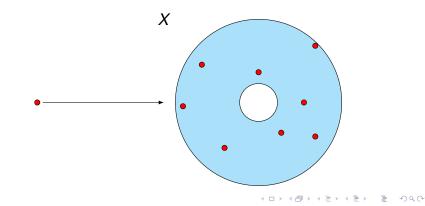
Let X be a topological space. Consider the set:

 $S_0X = \{u : \Delta^0 \to X : u \text{ is continuous}\}$



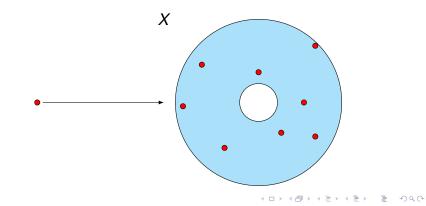
Let X be a topological space. Consider the set:

 $S_0X = \{u : \Delta^0 \to X : u \text{ is continuous}\}$



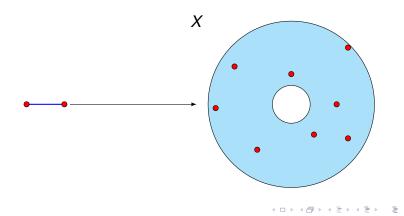
Let X be a topological space. Consider the set:

 $S_0X = \{u : \Delta^0 \to X : u \text{ is continuous}\} = X$



Let X be a topological space. Consider the set:

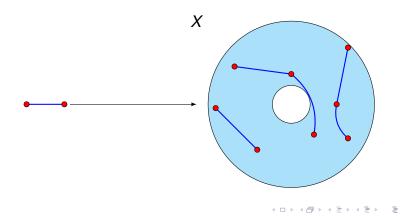
 $S_1X = \{u : \Delta^1 \to X : u \text{ is continuous}\}$



5900

Let X be a topological space. Consider the set:

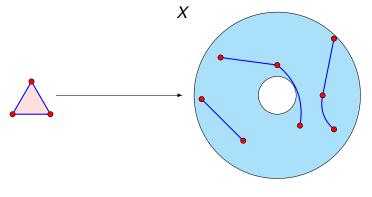
 $S_1X = \{u : \Delta^1 \to X : u \text{ is continuous}\}$



Sac

Let X be a topological space. Consider the set:

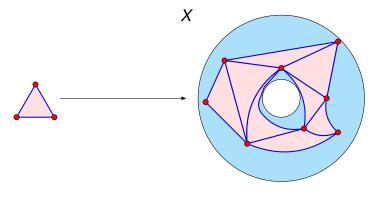
 $S_2X = \{u : \Delta^2 \to X : u \text{ is continuous}\}$



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

Let X be a topological space. Consider the set:

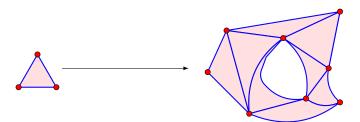
 $S_2X = \{u : \Delta^2 \to X : u \text{ is continuous}\}$



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

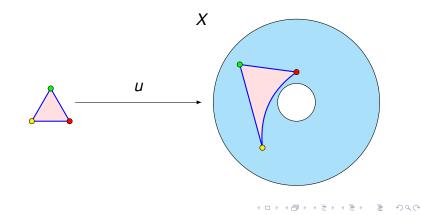
Let X be a topological space. Consider the set:

 $S_2X = \{u : \Delta^2 \to X : u \text{ is continuous}\}$



Let X be a topological space. Consider the set:

 $S_2X = \{u : \Delta^2 \to X : u \text{ is continuous}\}$



Let X be a topological space. Consider the set:

 $S_2X = \{u : \Delta^2 \to X : u \text{ is continuous}\}$ Х $u \circ \delta_0(\Delta^1)$ $\delta_0(\Delta^1)$

$$\left\{ egin{array}{c} \mathsf{Topological} \\ \mathsf{spaces} \end{array}
ight\} egin{array}{c} \mathcal{S}_* \\ \leftarrow \\ ert _{ert ert} \end{array} \left\{ egin{array}{c} \mathsf{Simplicial} \\ \mathsf{Sets} \end{array}
ight\}$$

$$X \longmapsto S_* \longrightarrow S_*X$$

 $u_1, u_2, u_3 \in S_2 X$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

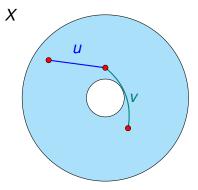
$$\left\{\begin{array}{c} \mathsf{Topological} \\ \mathsf{spaces} \end{array}\right\} \xrightarrow[|-]]{\mathcal{S}_*} \left\{\begin{array}{c} \mathsf{Simplicial} \\ \mathsf{Sets} \end{array}\right\} \xrightarrow{\mathbb{Z}} \left\{\begin{array}{c} \mathsf{Simplicial} \\ \mathsf{abelian} \\ \mathsf{groups} \end{array}\right\}$$

$$X \xrightarrow{S_*} S_*X \xrightarrow{\mathbb{Z}} \mathbb{Z}S_*X$$

 $\textit{\textbf{U}}_1,\textit{\textbf{U}}_2,\textit{\textbf{U}}_3\in\textit{S}_2\textit{X}$

 $3u_1 - 4u_2 + 15u_3 \in \mathbb{Z}S_2X$

Why?



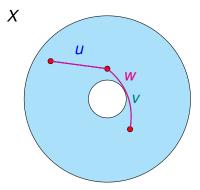
▲□▶▲□▶▲≡▶▲≡▶ ≡ のへぐ

Why?



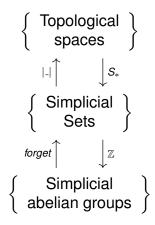
▲□▶▲□▶▲≡▶▲≡▶ ≡ のへぐ

Why?

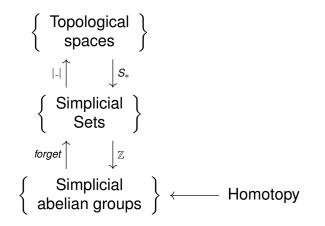


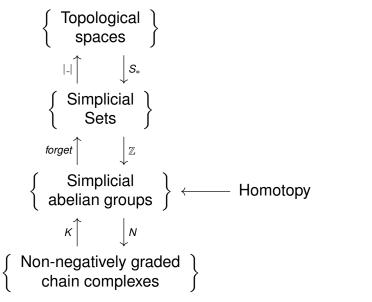
We would like to be able to say something like u + v = w.

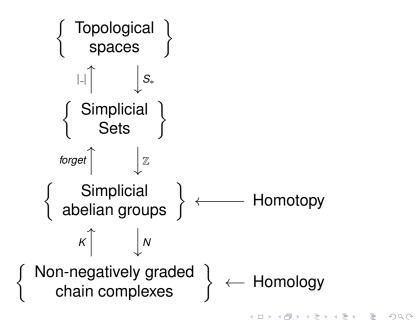
(ロ)

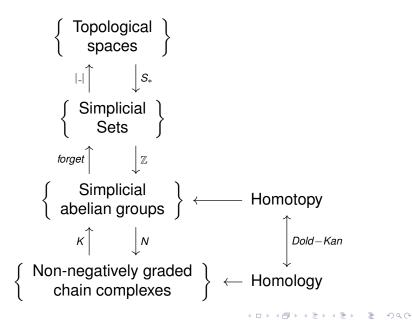


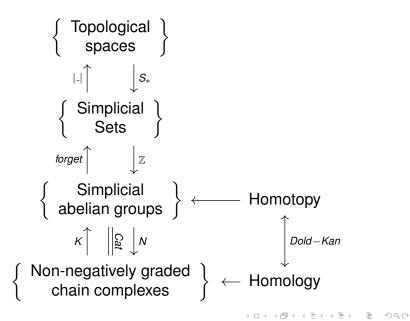
◆□▶ ◆□▶ ◆ ミ▶ ◆ ミト ・ ミー のへぐ

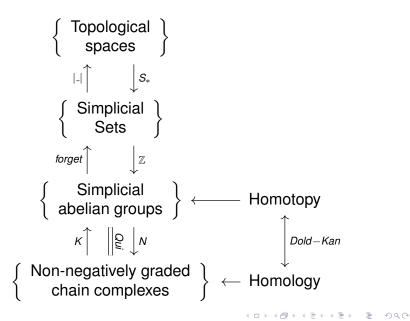


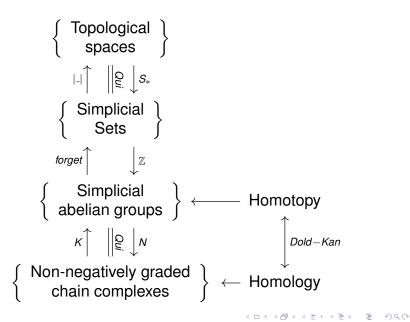




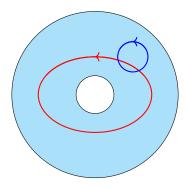




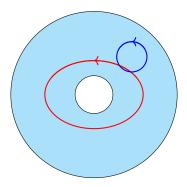




Homology

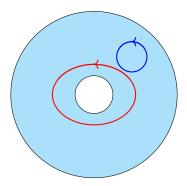


Homology



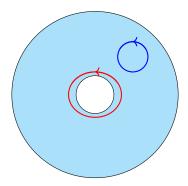
シック・ 州 ・ ・ 中・ ・ 中・ ・ 日・

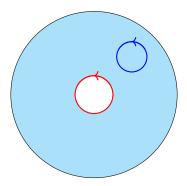
Homology

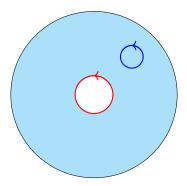


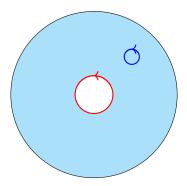
▲□▶▲□▶▲□▶▲□▶ □ のへで



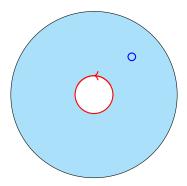


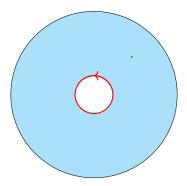


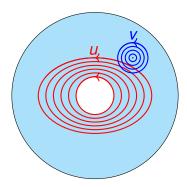


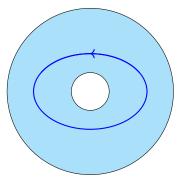


◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

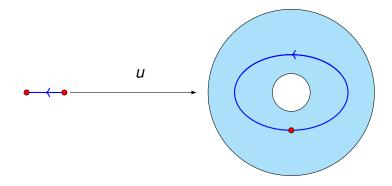


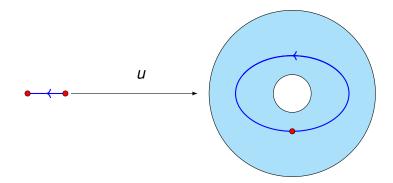






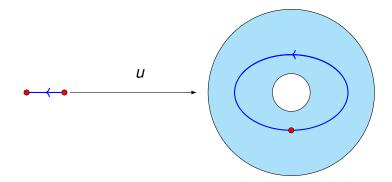
▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?



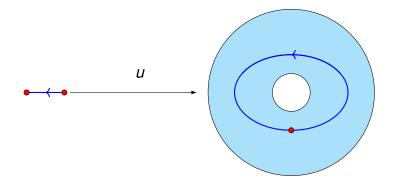


= 900

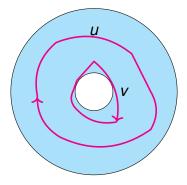
So cycles correspond to maps $u \in S_1X$ with $u \circ \delta_0(\Delta_1) - u \circ \delta_1(\Delta_1) = 0$.

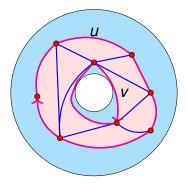


So cycles correspond to maps $u \in S_1 X$ with $u \circ \delta_0(\Delta_1) - u \circ \delta_1(\Delta_1) = 0$. For $u \in S_n X$ we define the differential $d_n : S_n X \to S_{n-1} X$ by $d_n(u) = \sum_{i=0}^n (-1)^i u \circ \delta_i$. We extend this linearly for $u \in \mathbb{Z}S_n X$.

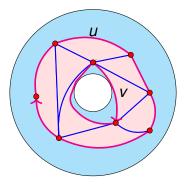


So cycles correspond to maps $u \in S_1 X$ with $u \circ \delta_0(\Delta_1) - u \circ \delta_1(\Delta_1) = 0$. For $u \in S_n X$ we define the differential $d_n : S_n X \to S_{n-1} X$ by $d_n(u) = \sum_{i=0}^n (-1)^i u \circ \delta_i$. We extend this linearly for $u \in \mathbb{Z}S_n X$. So an *n*-cycle is a map $u \in \mathbb{Z}S_n X$ with $u \in \ker(d_n)$.





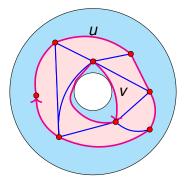
・ロト・「中・・ヨー・(日・・日・ つくぐ



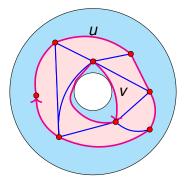
So, two cycles are to be thought of as the same if they can be "filled in" by a collection of 2-simplices.

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

990



So, two cycles are to be thought of as the same if they can be "filled in" by a collection of 2-simplices. Now, $d_2(\bigcirc) = u - v$, so $u - v \in Im(d_2)$.



So, two cycles are to be thought of as the same if they can be "filled in" by a collection of 2-simplices. Now, $d_2(\bigcirc) = u - v$, so $u - v \in \operatorname{Im}(d_2)$. So two *n*-cycles are the same iff their difference is in $\operatorname{Im}(d_{n+1})$.

We describe this situation algebraically:

• Both $Im(d_{n+1})$ and $ker(d_n)$ are subgroups of $\mathbb{Z}S_nX$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

We describe this situation algebraically:

- Both $Im(d_{n+1})$ and $ker(d_n)$ are subgroups of $\mathbb{Z}S_nX$.
- $d_n \circ d_{n+1} = 0$, so $Im(d_{n+1})$ is a subgroup of $ker(d_n)$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We describe this situation algebraically:

- Both $Im(d_{n+1})$ and $ker(d_n)$ are subgroups of $\mathbb{Z}S_nX$.
- $d_n \circ d_{n+1} = 0$, so $Im(d_{n+1})$ is a subgroup of $ker(d_n)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Therefore, we can form the quotient group $H_n(\mathbb{Z}SX) = \ker(d_n) / \operatorname{Im}(d_{n+1}).$

We describe this situation algebraically:

- Both $Im(d_{n+1})$ and $ker(d_n)$ are subgroups of $\mathbb{Z}S_nX$.
- $d_n \circ d_{n+1} = 0$, so $Im(d_{n+1})$ is a subgroup of $ker(d_n)$.
- Therefore, we can form the quotient group $H_n(\mathbb{Z}SX) = \ker(d_n) / \operatorname{Im}(d_{n+1}).$
- This identifies cycles that can be morphed into one another!

うして 山田 マイボット ボット シックション

We describe this situation algebraically:

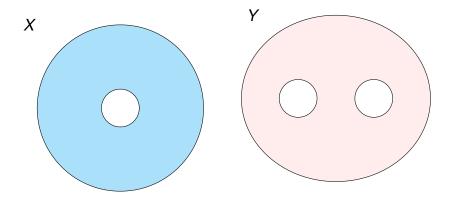
- Both $Im(d_{n+1})$ and $ker(d_n)$ are subgroups of $\mathbb{Z}S_nX$.
- $d_n \circ d_{n+1} = 0$, so $Im(d_{n+1})$ is a subgroup of $ker(d_n)$.
- Therefore, we can form the quotient group $H_n(\mathbb{Z}SX) = \ker(d_n) / \operatorname{Im}(d_{n+1}).$
- This identifies cycles that can be morphed into one another!
- This is an invariant under homeomorphism of topological spaces: if X is homeomorphic to Y, then H_n(ZSX) = H_n(ZSY) for all n.

うして 山田 マイボット ボット シックション

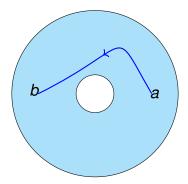
We describe this situation algebraically:

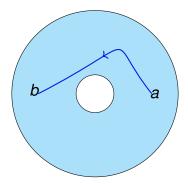
- Both $Im(d_{n+1})$ and $ker(d_n)$ are subgroups of $\mathbb{Z}S_nX$.
- $d_n \circ d_{n+1} = 0$, so $Im(d_{n+1})$ is a subgroup of $ker(d_n)$.
- Therefore, we can form the quotient group $H_n(\mathbb{Z}SX) = \ker(d_n) / \operatorname{Im}(d_{n+1}).$
- This identifies cycles that can be morphed into one another!
- This is an invariant under homeomorphism of topological spaces: if X is homeomorphic to Y, then H_n(ZSX) = H_n(ZSY) for all n.
- The converse is often useful: if $H_n(\mathbb{Z}SX) \neq H_n(\mathbb{Z}SY)$, then X is not homeomorphic to Y.

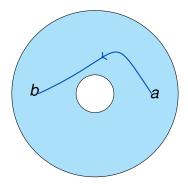
Back to our example...

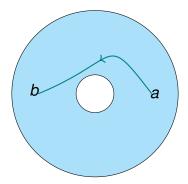


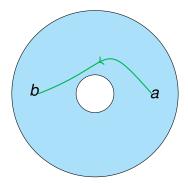
We can caluclate that $H_1(\mathbb{Z}SX) \cong \mathbb{Z}$, whereas $H_1(\mathbb{Z}SY) \cong \mathbb{Z}^2$ and so *X* is **not** homeomorphic to *Y*!

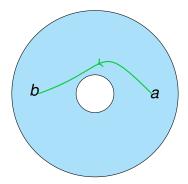


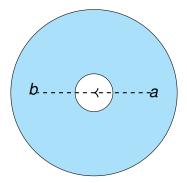


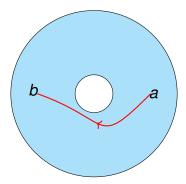


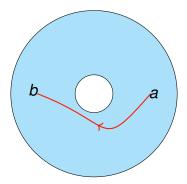


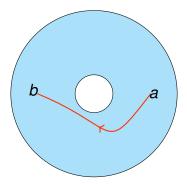


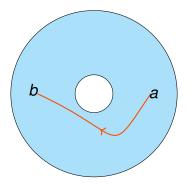






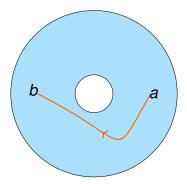






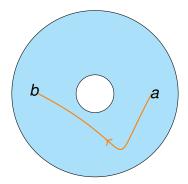
うしつ 前 (中下・(中下・(中下・(日))

Homotopy

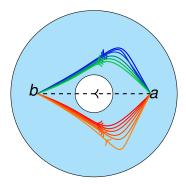


◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

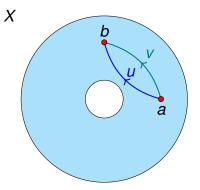
Homotopy



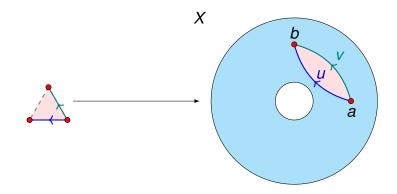
Homotopy



Simplicial Homotopy



Simplicial Homotopy



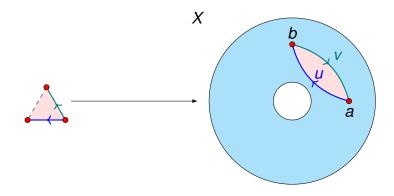
ヘロト 人間 とくほ とくほ とう

ъ

5900

We say u is *homotopic* to v, or $u \sim v$.

Simplicial Homotopy



We say u is *homotopic* to v, or $u \sim v$. Also u - v is a cycle, i.e. $u - v \in \text{ker}(d_n)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

• ker(d_n) is a subgroup of $\mathbb{Z}S_nX$.

- ker(d_n) is a subgroup of $\mathbb{Z}S_nX$.
- $\bullet\,$ For abelian groups, \sim is an equivalence relation.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- ker(d_n) is a subgroup of $\mathbb{Z}S_nX$.
- $\bullet\,$ For abelian groups, \sim is an equivalence relation.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Therefore, we can form the quotient $\pi_n(\mathbb{Z}SX) = \ker(d_n)/\sim$.

- ker(d_n) is a subgroup of $\mathbb{Z}S_nX$.
- $\bullet\,$ For abelian groups, $\sim\,$ is an equivalence relation.

- Therefore, we can form the quotient $\pi_n(\mathbb{Z}SX) = \ker(d_n)/\sim$.
- This identifies homotopic elements!

From how we've explained it, it is clear that $\pi_1(\mathbb{Z}SX) = H_1(\mathbb{Z}SX).$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

From how we've explained it, it is clear that $\pi_1(\mathbb{Z}SX) = H_1(\mathbb{Z}SX)$. As a corollary of the Dold-Kan correspondence, we have the following:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

From how we've explained it, it is clear that $\pi_1(\mathbb{Z}SX) = H_1(\mathbb{Z}SX)$. As a corollary of the Dold-Kan correspondence, we have the following:

Theorem

Let X be a topological space. Then

$$\pi_n(\mathbb{Z}SX) = H_n\left(\bigcap_{i=0}^{n-1} \ker(\delta_i : \mathbb{Z}S_nX \to \mathbb{Z}S_{n-1}X)\right)$$

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

SQA

Why bother with Homotopy?

• Homotopy captures more information about the space than homology.

Why bother with Homotopy?

- Homotopy captures more information about the space than homology.
- This whole correspondence can be abstracted: for a much more general object called a simplicial object A of the abelian category A, we define

$$\pi_n(\boldsymbol{A}) := \boldsymbol{H}_n\left(\bigcap_{i=0}^{n-1} \ker(\delta_i : \boldsymbol{A}_n \to \boldsymbol{A}_{n-1}\boldsymbol{X})\right)$$

This allows us to do homotopy theory in a more general setting.

Why bother with Homotopy?

- Homotopy captures more information about the space than homology.
- This whole correspondence can be abstracted: for a much more general object called a simplicial object A of the abelian category A, we define

$$\pi_n(\boldsymbol{A}) := \boldsymbol{H}_n\left(\bigcap_{i=0}^{n-1} \ker(\delta_i : \boldsymbol{A}_n \to \boldsymbol{A}_{n-1}\boldsymbol{X})\right)$$

This allows us to do homotopy theory in a more general setting.

• Abstract homotopy is useful in many other areas, such as computer science and logic with the invention of Homotopy Type Theory.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Algebraic ideas are usually related to some intuitive concept.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

- Algebraic ideas are usually related to some intuitive concept.
- It helps to keep this intuitive concept in mind when thinking more abstractly.

- Algebraic ideas are usually related to some intuitive concept.
- It helps to keep this intuitive concept in mind when thinking more abstractly.
- Incredibly abstract mathematics can be applied to many other areas, for example in homotopy type theory.

For further reading, I recommend:

- To learn more about homological algebra: Charles. A Weibel An Introduction to Homological Algebra, 1995.
- To learn more about simplicial sets: Greg Friedman An Elementary Illustrated Introduction to Simplicial Sets, 2011.
- For a very readable introduction category theory, a great souce is: Emily Riehl, *Category Theory in Context*, 2014.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

I welcome any questions!