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Propositions as Sets (BHK)

Let P be a set.

We think of P as a proposition. We
interpret p P P as a proof that P is true.
In this interpretation, H is interpreted as falsehood and
t˚u is interpreted as truth.
Given two sets P and Q,

The set P ˆQ is the logical statement P ^Q.
The set P \Q is the logical statement P _Q.
The set HompP,Qq is the logical statement P ñ Q.
The set HompP,Hq is the logical statement ␣P.
Given a set I and a family of sets tAiuiPI , the set ΠiPIAi

corresponds to universal quantification @i P I,Ai .
Similarly, the set ΣiPIAi corresponds to existential
quantification Di P I,Ai .
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Problems with BHK

p P P is a proof that P is true, but in ZFC is also a
proposition as it is a set.

The law of the excluded middle holds in this model,
so it is non-constructive.
Given p,q P P, we can ask externally if p “ q but
cannot form a set that is the proposition of this this
(We could form the set representing p – q though,
but this is different.)
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Propositions as Types

Martin-Löf dependent type theory (MLTT) was introduced
as a way to formalise “proof relevant” mathematics in a
logical foundation.

Terms and Types: We write a : A means a is a term
of type A.

Dependent Types: Types can depend on other
types; we write a : A $ Bpaq. This allows us to form
Π-, Σ- and Id- types.
Identity Types: given p,q : P, we can form the type
Idppp,qq.
Iterated identity types: but given x , y : Idppp,qq, we
can form IdIdppp,qqpx , yq...
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Properties of Identity Types

We can prove that:
For any a : A there is an element refla : IdApa,aq.

Given x : IdApa,bq, we can obtain sympxq : IdApb,aq.
Given x : IdApa,bq and y : IdApb, cq, we can find
transpx , yq : IdApa, cq.
transpx , sympxqq “ transpsympxq, xq “ refla.
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Groupoidal Model

This is due first to Hofmann and Streicher [HS98]:
Types are modelled by isofibrations.

For any groupoid P, the map PÑ 1 is an isofibration,
so all groupoids can be thought of as
(non-dependent) types.
For p,q P P, we model the identity type by
HomGpdpp,qq.
There is no higher structure...
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Simplicial Model

This was due first to Voevodksy [KL12]:
Types are modelled by Kan Fibrations.

For a simplicial set P, the map PÑ 1 is a Kan
fibration if and only if P is a Kan complex, so Kan
complexes are (non-dependent) types.
For p,q P P, we model the identity type by
HomsSetpp,qq.
There is higher structure.
In this model, univalence holds.



Simplicial Model

This was due first to Voevodksy [KL12]:
Types are modelled by Kan Fibrations.
For a simplicial set P, the map PÑ 1 is a Kan
fibration if and only if P is a Kan complex, so Kan
complexes are (non-dependent) types.

For p,q P P, we model the identity type by
HomsSetpp,qq.
There is higher structure.
In this model, univalence holds.



Simplicial Model

This was due first to Voevodksy [KL12]:
Types are modelled by Kan Fibrations.
For a simplicial set P, the map PÑ 1 is a Kan
fibration if and only if P is a Kan complex, so Kan
complexes are (non-dependent) types.
For p,q P P, we model the identity type by
HomsSetpp,qq.

There is higher structure.
In this model, univalence holds.



Simplicial Model

This was due first to Voevodksy [KL12]:
Types are modelled by Kan Fibrations.
For a simplicial set P, the map PÑ 1 is a Kan
fibration if and only if P is a Kan complex, so Kan
complexes are (non-dependent) types.
For p,q P P, we model the identity type by
HomsSetpp,qq.
There is higher structure.

In this model, univalence holds.



Simplicial Model

This was due first to Voevodksy [KL12]:
Types are modelled by Kan Fibrations.
For a simplicial set P, the map PÑ 1 is a Kan
fibration if and only if P is a Kan complex, so Kan
complexes are (non-dependent) types.
For p,q P P, we model the identity type by
HomsSetpp,qq.
There is higher structure.
In this model, univalence holds.



Weak Factorisation Systems

Both isofibrations and Kan fibrations are the right class of
a weak factorisation system:

Definition
A weak factorisation system (wfs) on a category M is a
pair pL,Rq of classes of morphisms in M such that:

1 Every map f : X Ñ Y can be factorised as a map in
L followed by a map in R.

2 L “& R and R “ L&.

X Y

‚

f

LQ PR

A X

B Y

LQ PR
D



Examples of WFSs

Example

Assuming the axiom of choice,

(injective, surjective)
forms a wfs for Set.
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Example ([GSS22])
Assuming the axiom of choice (complemented
inclusions, split epimorphism) forms a wfs on Set.
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Model Structures

The following is refined from Quillen’s original definition
[Qui67].

Definition
Let M be a category. A model structure on M consists of
three classes of maps W, C,F such that:

1 W satisfies 3-for-2.
2 pC X W,Fq and pC,FX Wq form weak factorisation

systems.



Examples of Model Structures

Example
Assuming the axiom of choice, there is a model
structure on Cat :

W “ tequivalences of categoriesu
C “ tinjective-on-objects functorsu
F “ tisofibrationsu



Examples of Model Structures

Example
Assuming the axiom of choice, there is a model
structure on sSet :

W “ thomotopy equivalencesu
C “ tmonomorphismsu
F “ tKan fibrationsu



Examples of Model Structures

Example ([GSS22])
Assuming the axiom of choice, there is a model
structure on sSet :

W “ thomotopy equivalencesu
C “ tReedy complemented inclusionsu
F “ tKan fibrationsu



Examples of Model Structures

Example ([GHSS22])
Let E be a category with some mild conditions. There is a
model structure on sE :

W “ thomotopy equivalencesu
C “ tReedy complemented inclusionsu
F “ tKan fibrationsu

This is called the effective model structure on sE.



A Constructive model structure on Cat

Theorem
Assuming the axiom of choice, there is a model
structure on Cat :

W “ tequivalences of categoriesu
C “ tinjective-on-objects functorsu
F “ tisofibrationsu

We call this the classical natural model structure on Cat.
This is cofibrantly generated and monoidal with respect to
ˆ.
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Theorem (H.)
Assuming the axiom of choice, there is a model
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Internalising

Theorem (H.)
Let E be a category satisfying some conditions (for
example, a Grothendieck topos).
There is a model structure on CatpEq :

W “ tequivalences of categoriesu
C “ tcomplemented inclusion-on-objects functorsu
F “ tisofibrationsu

we call this the natural model structure on CatpEq.
This is cofibrantly generated and monoidal with respect to
ˆ.



Algebraic WFSs

It is an open problem whether Voevodsky’s simplicial
model of HoTT is constructive. One suggestion on how to
solve this is using more algebraic formulations.

Definition
An algebraic weak factorisation system (awfs) on a
category M is a pair pL,Rq of a comonad and a monad on
MÑ such that:

1 pL-Coalg,R-Algq is a wfs on M.
2 A certain canonical map forms a distributive law.

Think of pf , αq P R-Alg as a fibration with the extra data α
of a lifting function.



Type Theoretic AWFS

Definition ([GL23])
An awfs pL,Rq is said to have the structure of a type
theoretic algebraic weak factorisation system (ttawfs) if
the following hold:

1 Maps in R-Alg are exponentiable.
2 It has a frobenius structure: R-Alg is stable under

pullback along maps in L-Colg.
3 It has the structure of a stable, functorial choice of

path objects.



Type Theoretic AWFS

Theorem ([GL23], Theorem 4.12)
Let pL,Rq be an awfs with the structure of a ttawfs. Then
the right adjoint splitting of the comprehension category
associated to the awfs is equipped with strictly stable
choices of Σ,Π and Id-types i.e. it forms a model of MLTT.



Type Theoretic AWFS

Theorem ([GL23], Theorem 5.5)
In Gpd, (strong deformation retracts, normal isofibrations)
underlies an awfs which has the structure of a ttawfs.



Algebraic Model Structures

The following was defined by Emily Riehl [Rie11].

Definition
Let M be a category, and W be a class of maps which
satisfies 3-for-2. An algebraic model structure on pM, Wq
is a pair of awfss pC,TFq and pTC,Fq such that:

The underlying wfss of these form a model structure
on M with W the class of weak equivalences.
There is a morphism of awfss ξ : pTC,Fq Ñ pC,TFq.



Constructive Algebraic Model Structures

Theorem (H.)
Let E be a category satisfying some conditions. There is
an algebraic model structure on CatpEq which has the
natural model structure on CatpEq as its underlying model
structure.
In particular, there exists an awfs pTC,Fq such that
TC-coalgebras are complemented inclusion on objects
functors which are equivalences and F-algebras are
isofibrations.

Theorem (H.)
Let E be a category satisfying some conditions. There is
an algebraic model structure on sE which has the effective
model structure on sE as its underlying model structure.
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An internal model of MLTT

Theorem (H.)
Let E be a category satisfying some conditions. In
GpdpEq, pTC,Fq has the structure of a ttawfs.



Summary

Category QMS? Alg? MLTT? agree?

Class. Gpd ✓ ✓ ✓ ✓

sSet ✓ ✓ ✓ ✓

Const. Gpd

✓ ✓
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✓
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✓ ?

Int. GpdpEq

✓ ✓ ✓

sE [GHSS22]

✓ ?
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Questions and Further Work

Can we prove that the awfs for sSet / sE form a
ttawfs? This would give a constructive simplicial
model of MLTT.

Should there be a link between models of MLTT and
(algebraic) model structures?
Explore the properties of the GpdpEq model. Do
different choices of E give different type theories?
In particular, look at GpdpEffq. Does this give a
model of “computable” type theory? (With Sam
Speight) Or a realisability 2-topos?
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Assumptions needed on E

Lextensivity.
Cartesian closed.
Finite limits.
Some conditions ensuring CatpEq has colimits (locally
finitely presentable will do, but probably so will
elementary topos + NNO).
Local Cartesian Closure.

A Grothendieck topos satisfies all of these. So does the
effective topos.


