Models of Martin-Löf Type Theory and Algebraic Model Structures

Calum Hughes

17th May 2024

The University of Manchester

Let P be a set.

Let *P* be a set. We think of *P* as a proposition.

Let *P* be a set. We think of *P* as a proposition. We interpret $p \in P$ as a proof that *P* is true.

Let *P* be a set. We think of *P* as a proposition. We interpret $p \in P$ as a proof that *P* is true. In this interpretation, \emptyset is interpreted as falsehood and $\{*\}$ is interpreted as truth. Given two sets *P* and *Q*,

• The set $P \times Q$ is the logical statement $P \wedge Q$.

- The set $P \times Q$ is the logical statement $P \wedge Q$.
- The set $P \sqcup Q$ is the logical statement $P \lor Q$.

- The set $P \times Q$ is the logical statement $P \wedge Q$.
- The set $P \sqcup Q$ is the logical statement $P \lor Q$.
- The set Hom(P, Q) is the logical statement $P \Rightarrow Q$.

- The set $P \times Q$ is the logical statement $P \wedge Q$.
- The set $P \sqcup Q$ is the logical statement $P \lor Q$.
- The set Hom(P, Q) is the logical statement $P \Rightarrow Q$.
- The set $\text{Hom}(P, \emptyset)$ is the logical statement $\neg P$.

- The set $P \times Q$ is the logical statement $P \wedge Q$.
- The set $P \sqcup Q$ is the logical statement $P \lor Q$.
- The set Hom(P, Q) is the logical statement $P \Rightarrow Q$.
- The set $Hom(P, \emptyset)$ is the logical statement $\neg P$.
- Given a set *I* and a family of sets {*A_i*}_{*i*∈*I*}, the set Π_{*i*∈*I*}*A_i* corresponds to universal quantification ∀*i* ∈ *I*, *A_i*.

- The set $P \times Q$ is the logical statement $P \wedge Q$.
- The set $P \sqcup Q$ is the logical statement $P \lor Q$.
- The set Hom(P, Q) is the logical statement $P \Rightarrow Q$.
- The set $Hom(P, \emptyset)$ is the logical statement $\neg P$.
- Given a set *I* and a family of sets {*A_i*}_{*i*∈*I*}, the set Π_{*i*∈*I*}*A_i* corresponds to universal quantification ∀*i* ∈ *I*, *A_i*.
- Similarly, the set Σ_{i∈I}A_i corresponds to existential quantification ∃i ∈ I, A_i.

p ∈ *P* is a proof that *P* is true, but in ZFC is also a proposition as it is a set.

- *p* ∈ *P* is a proof that *P* is true, but in ZFC is also a proposition as it is a set.
- The law of the excluded middle holds in this model, so it is non-constructive.

- *p* ∈ *P* is a proof that *P* is true, but in ZFC is also a proposition as it is a set.
- The law of the excluded middle holds in this model, so it is non-constructive.
- Given p, q ∈ P, we can ask externally if p = q but cannot form a set that is the proposition of this this (We could form the set representing p ≅ q though, but this is different.)

• Terms and Types: We write *a* : *A* means *a* is a *term* of *type A*.

- Terms and Types: We write *a* : *A* means *a* is a *term* of *type A*.
- Dependent Types: Types can depend on other types; we write a : A ⊢ B(a). This allows us to form Π-, Σ- and Id- types.

- Terms and Types: We write *a* : *A* means *a* is a *term* of *type A*.
- Dependent Types: Types can depend on other types; we write a : A ⊢ B(a). This allows us to form Π-, Σ- and Id- types.
- Identity Types: given p, q : P, we can form the type $Id_p(p, q)$.

- Terms and Types: We write *a* : *A* means *a* is a *term* of *type A*.
- Dependent Types: Types can depend on other types; we write a : A ⊢ B(a). This allows us to form Π-, Σ- and Id- types.
- Identity Types: given p, q : P, we can form the type $Id_p(p, q)$.
- Iterated identity types: but given $x, y : Id_p(p, q)$, we can form $Id_{Id_p(p,q)}(x, y)$...

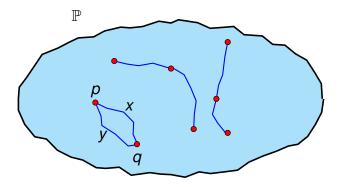
• For any a : A there is an element refl_a : $Id_A(a, a)$.

- For any a : A there is an element refl_a : $Id_A(a, a)$.
- Given $x : Id_A(a, b)$, we can obtain $sym(x) : Id_A(b, a)$.

- For any a : A there is an element refl_a : $Id_A(a, a)$.
- Given $x : Id_A(a, b)$, we can obtain $sym(x) : Id_A(b, a)$.
- Given $x : Id_A(a, b)$ and $y : Id_A(b, c)$, we can find trans $(x, y) : Id_A(a, c)$.

- For any a : A there is an element refl_a : $Id_A(a, a)$.
- Given $x : Id_A(a, b)$, we can obtain $sym(x) : Id_A(b, a)$.
- Given $x : Id_A(a, b)$ and $y : Id_A(b, c)$, we can find trans $(x, y) : Id_A(a, c)$.
- $trans(x, sym(x)) = trans(sym(x), x) = refl_a$.

Groupoidal Model



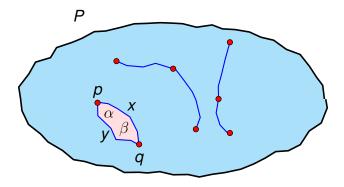
• Types are modelled by isofibrations.

- Types are modelled by isofibrations.
- For any groupoid P, the map P → 1 is an isofibration, so all groupoids can be thought of as (non-dependent) types.

- Types are modelled by isofibrations.
- For any groupoid P, the map P → 1 is an isofibration, so all groupoids can be thought of as (non-dependent) types.
- For $p, q \in \mathbb{P}$, we model the identity type by $Hom_{Gpd}(p, q)$.

- Types are modelled by isofibrations.
- For any groupoid P, the map P → 1 is an isofibration, so all groupoids can be thought of as (non-dependent) types.
- For $p, q \in \mathbb{P}$, we model the identity type by $Hom_{Gpd}(p, q)$.
- There is no higher structure...

Simplicial Model



• Types are modelled by Kan Fibrations.

- Types are modelled by Kan Fibrations.
- For a simplicial set P, the map P → 1 is a Kan fibration if and only if P is a Kan complex, so Kan complexes are (non-dependent) types.

- Types are modelled by Kan Fibrations.
- For a simplicial set P, the map P → 1 is a Kan fibration if and only if P is a Kan complex, so Kan complexes are (non-dependent) types.
- For $p, q \in \mathbb{P}$, we model the identity type by $Hom_{sSet}(p, q)$.

- Types are modelled by Kan Fibrations.
- For a simplicial set P, the map P → 1 is a Kan fibration if and only if P is a Kan complex, so Kan complexes are (non-dependent) types.
- For $p, q \in \mathbb{P}$, we model the identity type by $Hom_{sSet}(p, q)$.
- There is higher structure.

- Types are modelled by Kan Fibrations.
- For a simplicial set P, the map P → 1 is a Kan fibration if and only if P is a Kan complex, so Kan complexes are (non-dependent) types.
- For $p, q \in \mathbb{P}$, we model the identity type by $Hom_{sSet}(p, q)$.
- There is higher structure.
- In this model, univalence holds.

Weak Factorisation Systems

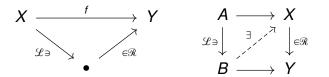
Both isofibrations and Kan fibrations are the right class of a weak factorisation system:

Definition

A weak factorisation system (wfs) on a category **M** is a pair $(\mathcal{L}, \mathcal{R})$ of classes of morphisms in **M** such that:

• Every map $f: X \to Y$ can be factorised as a map in \mathcal{L} followed by a map in \mathcal{R} .

2)
$$\mathcal{L} = {}^{\wedge} \mathcal{R}$$
 and $\mathcal{R} = \mathcal{L}^{\wedge}$.



Example

(injective, surjective)

forms a wfs for Set.

Example

Assuming the axiom of choice, (injective, surjective) forms a wfs for Set.

Example ([GSS22])

Assuming the axiom of choice (complemented inclusions, split epimorphism) forms a wfs on Set.

Example

(inj-on-objects, isofibrations + equiv) forms a weak factorisation system on **Cat**.

Example

Assuming the axiom of choice (inj-on-objects, isofibrations + equiv) forms a weak factorisation system on Cat.

The following is refined from Quillen's original definition [Qui67].

Definition

Let **M** be a category. A *model structure* on **M** consists of three classes of maps $\mathcal{W}, \mathcal{C}, \mathcal{F}$ such that:

- W satisfies 3-for-2.
- **2** $(\mathscr{C} \cap \mathscr{W}, \mathscr{F})$ and $(\mathscr{C}, \mathscr{F} \cap \mathscr{W})$ form weak factorisation systems.

Example

Assuming the axiom of choice, there is a model structure on Cat :

- $\mathcal{W} = \{ equivalences of categories \}$
- $\mathscr{C} = \{ injective-on-objects functors \}$
- $\mathcal{F} = \{\text{isofibrations}\}$

Example

Assuming the axiom of choice, there is a model structure on sSet :

- $\mathcal{W} = \{\text{homotopy equivalences}\}$
- $\mathscr{C} = \{\text{monomorphisms}\}$
- $\mathcal{F} = \{ Kan \ fibrations \}$

Example ([GSS22])

Assuming the axiom of choice, there is a model structure on sSet :

- $\mathcal{W} = \{\text{homotopy equivalences}\}$
- $\mathscr{C} = \{ \text{Reedy complemented inclusions} \}$
- $\mathcal{F} = \{\text{Kan fibrations}\}$

Example ([GHSS22])

- $\mathcal{W} = \{\text{homotopy equivalences}\}$
- $\mathscr{C} = \{ \text{Reedy complemented inclusions} \}$
- $\mathcal{F} = \{ Kan \ fibrations \}$

This is called the *effective model structure* on s*E*.

Theorem

Assuming the axiom of choice, there is a model structure on Cat :

- $\mathcal{W} = \{equivalences of categories\}$
- $\mathscr{C} = \{ injective-on-objects functors \}$
- $\mathcal{F} = \{isofibrations\}$

We call this the classical natural model structure on **Cat**. This is cofibrantly generated and monoidal with respect to \times .

Theorem (H.)

Assuming the axiom of choice, there is a model structure on **Cat** :

- $\mathcal{W} = \{ equivalences of categories \}$
- $\mathscr{C} = \{ complemented inclusion-on-objects functors \}$
- $\mathcal{F} = \{isofibrations\}$

we call this the classical natural model structure on Cat. This is cofibrantly generated and monoidal with respect to \times .

Theorem (H.)

Let & be a category satisfying some conditions (for example, a Grothendieck topos). There is a model structure on Cat(&):

- $\mathcal{W} = \{equivalences of categories\}$
- $\mathscr{C} = \{ complemented inclusion-on-objects functors \}$
- $\mathcal{F} = \{ isofibrations \}$

we call this the natural model structure on Cat(&). This is cofibrantly generated and monoidal with respect to \times . It is an open problem whether Voevodsky's simplicial model of HoTT is constructive. One suggestion on how to solve this is using more algebraic formulations.

Definition

An algebraic weak factorisation system (awfs) on a category **M** is a pair (\mathbb{L}, \mathbb{R}) of a comonad and a monad on M^{\rightarrow} such that:

$$(\overline{\mathbb{L}\text{-Coalg}}, \overline{\mathbb{R}\text{-Alg}}) \text{ is a wfs on } \mathbf{M}.$$

A certain canonical map forms a distributive law.

Think of $(f, \alpha) \in \overline{\mathbb{R}}$ -Alg as a fibration with the extra data α of a lifting function.

Definition ([GL23])

An awfs (\mathbb{L}, \mathbb{R}) is said to have the structure of a *type* theoretic algebraic weak factorisation system (ttawfs) if the following hold:

- Maps in $\overline{\mathbb{R}}$ -Alg are exponentiable.
- lt has a frobenius structure: $\overline{\mathbb{R}}$ -Alg is stable under pullback along maps in $\overline{\mathbb{L}}$ -Colg.
- It has the structure of a stable, functorial choice of path objects.

Theorem ([GL23], Theorem 4.12)

Let (\mathbb{L}, \mathbb{R}) be an awfs with the structure of a ttawfs. Then the right adjoint splitting of the comprehension category associated to the awfs is equipped with strictly stable choices of Σ , Π and Id-types i.e. it forms a model of MLTT.

Theorem ([GL23], Theorem 5.5)

In **Gpd**, (strong deformation retracts, normal isofibrations) underlies an awfs which has the structure of a ttawfs.

The following was defined by Emily Riehl [Rie11].

Definition

Let **M** be a category, and \mathscr{W} be a class of maps which satisfies 3-for-2. An *algebraic model structure* on $(\mathbf{M}, \mathscr{W})$ is a pair of awfss $(\mathbb{C}, \mathbb{TF})$ and $(\mathbb{TC}, \mathbb{F})$ such that:

- The underlying wfss of these form a model structure on M with ₩ the class of weak equivalences.
- There is a morphism of awfss $\xi : (\mathbb{TC}, \mathbb{F}) \to (\mathbb{C}, \mathbb{TF})$.

Constructive Algebraic Model Structures

Theorem (H.)

Let & be a category satisfying some conditions. There is an algebraic model structure on Cat(&) which has the natural model structure on Cat(&) as its underlying model structure.

In particular, there exists an awfs $(\mathbb{TC}, \mathbb{F})$ such that \mathbb{TC} -coalgebras are complemented inclusion on objects functors which are equivalences and \mathbb{F} -algebras are isofibrations.

Constructive Algebraic Model Structures

Theorem (H.)

Let & be a category satisfying some conditions. There is an algebraic model structure on Cat(&) which has the natural model structure on Cat(&) as its underlying model structure.

In particular, there exists an awfs $(\mathbb{TC}, \mathbb{F})$ such that \mathbb{TC} -coalgebras are complemented inclusion on objects functors which are equivalences and \mathbb{F} -algebras are isofibrations.

Theorem (H.)

Let & be a category satisfying some conditions. There is an algebraic model structure on **s**[®] which has the effective model structure on **s**[®] as its underlying model structure.

Theorem (H.)

Let \mathscr{E} be a category satisfying some conditions. In $\mathbf{Gpd}(\mathscr{E}), (\mathbb{TC}, \mathbb{F})$ has the structure of a ttawfs.

	Category	QMS?	Alg?	MLTT?	agree?
Class.	Gpd	\checkmark	\checkmark	\checkmark	\checkmark
	sSet	\checkmark	\checkmark	\checkmark	\checkmark
Const.	Gpd			[GL23]	
	sSet	[GSS22]			
Int.	$\mathbf{Gpd}(\mathscr{E})$				
	SE	[GHSS22]			

	Category	QMS?	Alg?	MLTT?	agree?
Class.	Gpd	\checkmark	\checkmark	\checkmark	\checkmark
	sSet	\checkmark	\checkmark	\checkmark	\checkmark
Const.	Gpd	\checkmark	\checkmark	[GL23]	×
	sSet	[GSS22]	\checkmark		
Int.	$\mathbf{Gpd}(\mathscr{E})$	\checkmark	\checkmark		
	SE	[GHSS22]	\checkmark		

	Category	QMS?	Alg?	MLTT?	agree?
Class.	Gpd	\checkmark	\checkmark	\checkmark	\checkmark
	sSet	\checkmark	\checkmark	\checkmark	\checkmark
Const.	Gpd	\checkmark	\checkmark	Н.	\checkmark
	sSet	[GSS22]	\checkmark		
Int.	$\mathbf{Gpd}(\mathscr{E})$	\checkmark	\checkmark	\checkmark	\checkmark
	SE	[GHSS22]	\checkmark		

	Category	QMS?	Alg?	MLTT?	agree?
Class.	Gpd	\checkmark	\checkmark	\checkmark	\checkmark
	sSet	\checkmark	\checkmark	\checkmark	\checkmark
Const.	Gpd	\checkmark	\checkmark	H.	\checkmark
	sSet	[GSS22]	\checkmark	?	
Int.	$\mathbf{Gpd}(\mathscr{E})$	\checkmark	\checkmark	\checkmark	\checkmark
	SE	[GHSS22]	\checkmark	?	

 Can we prove that the awfs for sSet / s[®] form a ttawfs? This would give a constructive simplicial model of MLTT.

- Can we prove that the awfs for sSet / s[®] form a ttawfs? This would give a constructive simplicial model of MLTT.
- Should there be a link between models of MLTT and (algebraic) model structures?

- Can we prove that the awfs for sSet / s[®] form a ttawfs? This would give a constructive simplicial model of MLTT.
- Should there be a link between models of MLTT and (algebraic) model structures?
- Explore the properties of the **Gpd**(*&*) model. Do different choices of *&* give different type theories?

- Can we prove that the awfs for sSet / s[®] form a ttawfs? This would give a constructive simplicial model of MLTT.
- Should there be a link between models of MLTT and (algebraic) model structures?
- Explore the properties of the **Gpd**(*&*) model. Do different choices of *&* give different type theories?
- In particular, look at Gpd(Eff). Does this give a model of "computable" type theory? (With Sam Speight) Or a realisability 2-topos?

References I

Nicola Gambino, Simon Henry, Christian Sattler, and Karol Szumiło. The effective model structure and ∞ -groupoid objects. Forum of Mathematics, Sigma, 10:e34, 2022.

Nicola Gambino and Marco Federico Larrea. Models of martin-löf type theory from algebraic weak factorisation systems.

The Journal of Symbolic Logic, 88(1):242–289, 2023.

Nicola Gambino, Christian Sattler, and Karol Szumiło. The constructive kan-quillen model structure: two new proofs.

The Quarterly Journal of Mathematics, 73(4):1307–1373, 2022.

References II

Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. *Twenty-five years of constructive type theory (Venice, 1995)*, 36:83–111, 1998.

Chris Kapulkin and Peter LeFanu Lumsdaine. The simplicial model of univalent foundations (after voevodsky).

arXiv preprint arXiv:1211.2851, 2012.

📄 D. G. Quillen.

Homotopical Algebra.

Lecture notes in mathematics. Springer-Verlag, 1967.

Emily Riehl. Algebraic model structures. The University of Chicago, 2011.

- Lextensivity.
- Cartesian closed.
- Finite limits.
- Some conditions ensuring Cat(&) has colimits (locally finitely presentable will do, but probably so will elementary topos + NNO).
- Local Cartesian Closure.

A Grothendieck topos satisfies all of these. So does the effective topos.