The Elementary Theory of the 2-Category of Small Categories

Calum Hughes

j.w.w. Adrian Miranda

5th June 2024

The University of Manchester

ZFC and ETCS

<u>ZFC</u>

- First order theory.
- Well-founded trees.
- Axiomatises " $x \in X$ ".

ZFC and ETCS

<u>ZFC</u>

- First order theory.
- Well-founded trees.
- Axiomatises " $x \in X$ ".

ETCS (Lawvere, 1964)

- Assume the existence of a category & satisfying some properties.
- Axiomatises

• We can do "naïve" set theory here.

ETCS and ET2CSC

ET2CSC

- Assume the existence of a 2-category *K* satisfying some properties.
- Axiomatises

ETCS (Lawvere, 1964)

- Assume the existence of a category & satisfying some properties.
- Axiomatises

• We can do "naïve" set theory here.

- $\mathscr{E} \models \mathsf{ETCS} \mathsf{if}:$
- It has finite limits.

- $\mathcal{E} \models \mathsf{ETCS} \mathsf{ if}:$
- It has finite limits.
- It is cartesian closed.

 $X, Y \in \mathcal{E} \dashrightarrow X^{Y} \in \mathcal{E}$ $[Y \times Z, X] \cong [Z, X^{Y}]$

- It has finite limits.
- It is cartesian closed.
- It has a subobject classifier.

- It has finite limits.
- It is cartesian closed.
- It has a subobject classifier.
- It has a natural numbers object.

- It has finite limits.
- It is cartesian closed.
- It has a subobject classifier.
- It has a natural numbers object.
- It is well-pointed.

$$\mathbf{1} \xrightarrow{\forall x} A \xrightarrow{f} B$$

$$fx = gx \implies f = g$$

- It has finite limits.
- It is cartesian closed.
- It has a subobject classifier.
- It has a natural numbers object.
- It is well-pointed.
- It satisfies the external axiom of choice.

Assuming AOC: ● Set ⊨ ETCS. Assuming AOC:

- Set \models ETCS.
- Let λ be an uncountable, strong limit cardinal. Then **Set**_{λ} \models ETCS.

Assuming AOC:

- Set \models ETCS.
- Let λ be an uncountable, strong limit cardinal. Then **Set**_{λ} \models ETCS.

A trivial example:

• $\mathbf{1} \models \mathsf{ETCS}.$

For 1 < λ ≤ ℵ₀,
 Set_λ has no NNO.

- For 1 < λ ≤ ℵ₀,
 Set_λ has no NNO.
- Cat₁ is not well-pointed.

- For $1 < \lambda \leq \aleph_0$, **Set**_{λ} has no NNO.
- Cat₁ is not well-pointed.

- For $1 < \lambda \leq \aleph_0$, Set_{λ} has no NNO.
- Cat₁ is not well-pointed.
- Grp is not well pointed.

$$\mathbf{1} \stackrel{\exists !e}{\longrightarrow} G \stackrel{f}{\underset{g}{\longrightarrow}} H$$

$$fe = ge \Rightarrow f = g$$

Let $\mathscr{E} \models \mathsf{ETCS}$.

● *X* ∈ ℰ ∽ sets.

Let $\mathscr{E} \models \mathsf{ETCS}$.

- *X* ∈ ℰ ∽→ sets.
- $\mathbf{1} \rightarrow X \rightsquigarrow$ elements of X.

Let $\mathcal{E} \models \mathsf{ETCS}$.

- *X* ∈ ℰ ∽→ sets.
- $1 \rightarrow X \rightsquigarrow$ elements of X.
- $\Omega^X \rightsquigarrow$ power set of X.

Let $\mathcal{E} \models \mathsf{ETCS}$.

- *X* ∈ ℰ ∽→ sets.
- $\mathbf{1} \rightarrow X \rightsquigarrow$ elements of X.
- $\Omega^X \rightsquigarrow$ power set of X.
- + more...

ETCS corresponds to a fragment of ZFC.

ETCS corresponds to a fragment of ZFC.

Cannot form the set

$$\bigsqcup_{n\in\mathbb{N}}f_n(\mathbb{N})$$

where $f_{n+1}(X) := \mathbb{N}^{f_n(X)}$.

ETCS corresponds to a fragment of ZFC.

Cannot form the set

$$\bigsqcup_{n\in\mathbb{N}}f_n(\mathbb{N})$$

where $f_{n+1}(X) := \mathbb{N}^{f_n(X)}$.

In ZFC vvv replacement.

Replacement

Replacement

$$gf^{-1}(z) = \bigsqcup_{y \in g^{-1}(z)} f^{-1}(y)$$

Replacement

To axiomatise classes and sets vor Joyal and Moerdijk's algebraic set theory.

 $y \in g^{-1}(z)$

Outline

Definition

A small category is:

$$\dots \longrightarrow C_1 \times_{C_0} C_1 \xrightarrow[p_2]{m} C_1 \xrightarrow[d_1]{i} C_0$$

Where $C_0, C_1 \in$ **Set**. These are the objects of a 2-category **Cat**.

Definition Let & be a category with pullbacks. A category internal to & is:

$$\dots \longrightarrow C_1 \times_{C_0} C_1 \xrightarrow[]{p_1}{m} C_1 \xrightarrow[]{d_1}{i} C_0$$
$$\xrightarrow[]{p_2}{m} C_1 \xrightarrow[]{d_1}{i} C_0$$

Where $C_0, C_1 \in \mathcal{E}$. These are the objects of a 2-category **Cat**(\mathcal{E}).

$Cat(Set) = Cat \rightsquigarrow \mathcal{E} \models ETCS$, then $Cat(\mathcal{E}) \approx Cat$.

Limits and Cartesian Closure

Theorem

- **()** \mathcal{E} has finite limits iff **Cat**(\mathcal{E}) has finite 2-limits.
- S is cartesian closed if and only if Cat(S) is 2-cartesian closed. ([BE69] [Mir18])

Limits and Cartesian Closure

Theorem

- & is cartesian closed if and only if Cat(&) is 2-cartesian closed. ([BE69] [Mir18])

The proofs use:

- The theory of limit sketches.
- The nerve $N : Cat(\mathcal{E}) \rightarrow s\mathcal{E}$
- disc \dashv $(-)_0 \dashv$ indisc : $\mathscr{E} \rightarrow Cat(\mathscr{E})$

Full Subobject Classifiers

Full monos are defined representably in \mathcal{K} .

Definition

Let \mathcal{K} be a 2-category. A full subobject classifier is:

• a full monomorphism $\underline{\top} : \underline{1} \to \underline{\Omega}$ such that:

∀ full monos *i* : A → B, ∃!χ_i : B → Ω making the following square a pullback.

For $\mathcal{K} = \mathbf{Cat}$, the full subobject classifier is given by $\mathbf{1} \to \mathbb{I} := \{\mathbf{0} \cong \mathbf{1}\}.$

For $\mathcal{K} = \mathbf{Cat}$, the full subobject classifier is given by $\mathbf{1} \to \mathbb{I} := \{\mathbf{0} \cong \mathbf{1}\}.$

For $\mathcal{K} = \mathbf{Cat}$, the full subobject classifier is given by $\mathbf{1} \to \mathbb{I} := \{\mathbf{0} \cong \mathbf{1}\}.$

Note that $\mathbb{I} = indisc(\{0, 1\})$.

Let & be a category with finite limits. TFAE

- & has a subobject classifier.
- Cat(&) has a full subobject classifier.

Let & be a category with finite limits. TFAE

- & has a subobject classifier.
- Cat(&) has a full subobject classifier.

Proof. (Sketch)

- $1 \rightarrow \Omega$ SOC for $\mathscr{E} \dashrightarrow 1 \rightarrow indisc(\Omega)$ is FSOC for $Cat(\mathscr{E})$.
- $1 \rightarrow \underline{\Omega}$ FSOC for **Cat**(\mathscr{E}) $\rightsquigarrow 1 \rightarrow \underline{\Omega}_0$ SOC for \mathscr{E} .

Natural Numbers Object

Definition

Let \mathcal{K} be a 2-category with a terminal object <u>1</u>.

$$\underline{\mathbf{1}} \xrightarrow{z} \underline{N} \xrightarrow{s} \underline{N}$$

is called a *natural numbers object* in \mathcal{K} if it is a natural numbers object for the underlying 1-category of \mathcal{K} and if:

For $\mathcal{H} = \mathbf{Cat}$, the natural numbers object is given by $\mathbf{disc}(\mathbb{N})$.

For $\mathcal{H} = \mathbf{Cat}$, the natural numbers object is given by $\mathbf{disc}(\mathbb{N})$.

Let & be a category with finite limits. TFAE

- & has a natural numbers object.
- Cat(&) has a natural numbers object.

Let & be a category with finite limits. TFAE

- & has a natural numbers object.
- Cat(*E*) has a natural numbers object.

Proof. (Sketch) (N, z, s) NNO for $\mathscr{E} \rightsquigarrow (\operatorname{disc}(N), \operatorname{disc}(z), \operatorname{disc}(s))$ is a NNO for $\operatorname{Cat}(\mathscr{E})$. $(\underline{N}, \underline{z}, \underline{s})$ NNO in $\operatorname{Cat}(\mathscr{E}) \rightsquigarrow (\underline{N}_0, \underline{z}_0, \underline{s}_0)$ is an NNO for \mathscr{E} .

Well-pointedness

Let 2 denote the walking arrow in Cat.

Definition

A 2-category ${\mathcal K}$ is called 2-well-pointed if the following conditions hold.

- \mathcal{K} has a terminal object <u>1</u>.
- 2 The copower $\mathbf{2} \odot \mathbf{1}$ exists in \mathcal{K} .
- Solution The family containing just 2 ⊙ <u>1</u> is a generator for the 2-category *ℋ*.

Well-pointedness

Let 2 denote the walking arrow in Cat.

Definition

A 2-category ${\mathcal K}$ is called 2-well-pointed if the following conditions hold.

- \mathcal{K} has a terminal object <u>1</u>.
- **2** The copower $\mathbf{2} \odot \mathbf{1}$ exists in \mathcal{K} .
- Solution The family containing just $\mathbf{2} \odot \underline{\mathbf{1}}$ is a generator for the 2-category \mathcal{K} .

For $\mathcal{K} = \mathbf{Cat}, \mathbf{2} \odot \mathcal{A} := \mathbf{2} \times \mathcal{A}$.

$$\mathbf{2} \xrightarrow{\forall f} \mathscr{A} \xrightarrow{F}_{G} \mathscr{B}$$

 $Ff = Gf \implies F = G$

Let & be a lextensive, cartesian closed category. TFAE

- & is well-pointed.
- Cat(&) is 2-well-pointed.

Let & be a lextensive, cartesian closed category. TFAE

- & is well-pointed.
- Cat(&) is 2-well-pointed.

We construct an internal free living arrow $\mathbf{2}_{\&}$.

Let & be a lextensive, cartesian closed category. TFAE

- & is well-pointed.
- Cat(*&*) is 2-well-pointed.

We construct an internal free living arrow $2_{\&}$. As a stepping stone in our proof, we also show that & is lextensive iff Cat(&) is lextensive in the 2 dimensional sense.

Proposition

Let $\ensuremath{\mathfrak{E}}$ be a category with pullbacks. TFAE:

- The external axiom of choice holds in *&*.
- Any fully faithful and epi-on-objects functor internal to & has a section in the 2-category Cat(&).

Lemma

There is an (epi, mono) orthogonal factorisation system on \mathcal{E} if and only if there is an

(epi-on-objects, full monomorphism)

orthogonal factorisation system on Cat(&).

Lemma

There is an (epi, mono) orthogonal factorisation system on \mathcal{E} if and only if there is an

(epi-on-objects, full monomorphism)

orthogonal factorisation system on Cat(*&*).

 $(\mathcal{L}, \mathcal{R})$ on $\mathcal{E} \rightsquigarrow$ $(\mathcal{L} \text{ on objects}, \mathcal{R} \text{ on objects and fully faithful})$ on **Cat** (\mathcal{E}) .

Lemma

There is an (epi, mono) orthogonal factorisation system on ${\it \&}$ if and only if there is an

(epi-on-objects, full monomorphism)

orthogonal factorisation system on Cat(*&*).

 $(\mathcal{L}, \mathcal{R})$ on $\mathcal{E} \leadsto$ $(\mathcal{L} \text{ on objects}, \mathcal{R} \text{ on objects and fully faithful})$ on **Cat** (\mathcal{E}) .

Definition ([Str82])

A morphism in a 2-category \mathcal{K} which is left orthogonal to all fully faithful monomorphisms in \mathcal{K} will be called *acute*.

Definition

Say that a 2-category \mathcal{K} satisfies the *categorified axiom* of choice if any acute fully faithful morphism has a section.

Let & be a category with pullbacks, products and an (epi, mono)-orthogonal factorisation system. TFAE:

- The category & satisfies the external axiom of choice.
- The 2-category Cat(*E*) satisfies the categorified axiom of choice.

Summary

For the 1-category &:

- finite limits
- cartesian closure
- subobject classifier
- natural numbers object
- well-pointed
- axiom of choice

For the 2-category $Cat(\mathscr{E})$:

- finite 2-limits
- cartesian closure
- full subobject classifier
- natural numbers object
- 2-well-pointed
- categorified axiom of choice

Summary

For the 1-category &:

- finite limits
- cartesian closure
- subobject classifier
- natural numbers object
- well-pointed
- axiom of choice

For the 2-category $Cat(\mathscr{E})$:

- finite 2-limits
- cartesian closure
- full subobject classifier
- natural numbers object
- 2-well-pointed
- categorified axiom of choice

Theorem ([Bou10])

If \mathscr{E} is a category with pullbacks then the 2-category $\mathscr{K} := \mathbf{Cat}(\mathscr{E})$ satisfies the conditions listed below. Conversely, if \mathscr{K} satisfies the conditions listed below, then there is a 2-equivalence $\mathscr{K} \simeq \mathbf{Cat}(\mathscr{E})$ where $\mathscr{E} := \mathbf{Disc}(\mathscr{K})$.

- **①** \mathcal{K} has pullbacks and powers by **2**.
- Odescent morphisms are effective in K.
- Discrete objects in *H* are projective.
- For every object A ∈ ℋ, there is a projective object
 P ∈ ℋ and a codescent morphism c : P → A.

Theorem ([Bou10])

If \mathscr{E} is a category with pullbacks then the 2-category $\mathscr{K} := \operatorname{Cat}(\mathscr{E})$ satisfies Bourke's axioms. Conversely, if \mathscr{K} satisfies Bourke's axioms, then there is a 2-equivalence $\mathcal{K} \simeq \operatorname{Cat}(\mathscr{E})$ where $\mathscr{E} := \operatorname{Disc}(\mathscr{K})$.

ET2CSC

Definition

We say that the 2-category \mathcal{K} models the *elementary theory of the* 2*-category of small categories* (ET2CSC) if the following properties hold:

- It satisfies Bourke's axioms.
- It has a terminal object.
- It is cartesian closed.
- It is 2-well-pointed.
- It has a natural numbers object.
- It has a full subobject classifier.
- It satisfies the categorified axiom of choice.

We write $\mathcal{K} \models \mathsf{ET2CSC}$

Assuming the axiom of choice:

• Cat \models ET2CSC.

Assuming the axiom of choice:

- Cat \models ET2CSC.
- Let λ be an uncountable, strong limit cardinal. Then **Cat**(**Set**_{λ}) \models ET2CSC.

Assuming the axiom of choice:

- Cat \models ET2CSC.
- Let λ be an uncountable, strong limit cardinal. Then **Cat**(**Set**_{λ}) \models ET2CSC.

Trivial example:

• $1 = Cat(1) \models ET2CSC.$

- Let & be a category. Then & ⊨ ETCS if and only if
 Cat(&) ⊨ ET2CSC, and in this case
 & ≃ Disc(Cat(&)).
- 2 Let \mathcal{K} be a 2-category. Then $\mathcal{K} \models ET2CSC$ if and only if $Disc(\mathcal{K}) \models ETCS$, and in this case $\mathcal{K} \simeq Cat(Disc(\mathcal{K}))$.
- This extends to a biequivalence

$$\begin{array}{c} \textbf{ETCS} \xrightarrow{\textbf{Disc}(-)} \\ \overbrace{\qquad \\ \textbf{Cat}(-)} \\ \end{array} \begin{array}{c} \textbf{ET2CSC} \\ \end{array}$$

Outline

Elementary 2 toposes

For the 1-category &:

- finite limits
- cartesian closure
- subobject classifier

is an elementary 1-topos!

Elementary 2 toposes

For the 1-category &:

- finite limits
- cartesian closure
- subobject classifier

is an elementary 1-topos!

For the 2-category $Cat(\mathcal{E})$

- finite 2-limits
- cartesian closure
- full subobject classifier

... is not an elementary 2-topos in the sense of [Web07].

A discrete opfibration in Cat is

A discrete opfibration in Cat is

A discrete opfibration in Cat is

In a 2-category $\ensuremath{\mathcal{K}},$ we define discrete opfibrations representably.

Recall the Grothendieck construction:

 $el_{\mathscr{A}}: \textbf{CAT}(\mathscr{A}, \textbf{Set}) \rightarrow \textbf{DopFib}/\mathscr{A}.$

Definition ([Web07])

A discrete opfibration classifier for \mathcal{K} consists of a discrete opfibration $p : S_* \to S$ such that for any $X \in \mathcal{K}$, the functor $el_X : \mathcal{K}(X, S) \to \mathbf{Dopfib}/X$ which sends $f \in \mathcal{K}(X, S)$ to the pullback of p along f is fully faithful.

Definition ([Web07])

An *elementary* 2-*topos* is a 2-category \mathcal{K} such that

- It has finite 2-limits.
- It is cartesian closed.
- It has a duality involution.
- It has a discrete opfibration classifier.

Definition ([Web07])

An *elementary* 2-*topos* is a 2-category \mathcal{K} such that

- It has finite 2-limits.
- It is cartesian closed.
- It has a duality involution.
- It has a discrete opfibration classifier.

So Cat is not a 2-topos, but rather CAT is.

In SET :

2D replacement

In CAT :

Shulman: if \mathcal{K} has a discrete opfibration classifier $p: S_* \to S$.

This is a 2-categorical axiom of replacement!

Definition

Let \mathcal{K} be a 2-category with a discrete opfibration classifier $p: S_* \to S$, and let $\mathcal{K}_{\sigma} \hookrightarrow \mathcal{K}$ denote the full-sub-2-category of small objects. Then $(\mathcal{K}, p: S_* \to S)$ is said to be a 2-category of categories if the following conditions hold.

1
$$\mathscr{K}_{\sigma}, \mathscr{K} \vDash \mathsf{ET2CSC}$$
 .

- **2** $\mathcal{H}_{\sigma} \hookrightarrow \mathcal{H}$ is a morphism of models of ET2CSC.
- Small discrete opfibrations are closed under composition.

Example

$(CAT, p : Set_* \rightarrow Set)$ is a 2-category of categories. Cat $\hookrightarrow CAT$

Let μ be an inaccessible cardinal and $\lambda>\mu$ be a strong limit cardinal.

Write Set := Set_{μ}, Cat := Cat(Set) and CAT := Cat(Set_{λ}). Then:

 $(CAT, p : Set_* \rightarrow Set)$ is a 2-category of categories.

 $\textbf{Cat} \hookrightarrow \textbf{CAT}$

• 2CoC satisfy Shulman's 2D AST.

- 2CoC satisfy Shulman's 2D AST.
- Free cocompletions in 2CoC.

- 2CoC satisfy Shulman's 2D AST.
- Free cocompletions in 2CoC.
- A more genuinely 2D NNO.

- 2CoC satisfy Shulman's 2D AST.
- Free cocompletions in 2CoC.
- A more genuinely 2D NNO.
- Coequalisers in ET2CSC.

ArXiv link

The Elementary Theory of the 2-Category of Small Categories, written with Adrian Miranda, 2024. To appear in TAC: special volume for Bill Lawvere.

https://arxiv.org/abs/2403.03647

References I

Andrée Bastiani and Charles Ehresmann. Catégories de foncteurs structurés. Cahiers de topologie et géométrie différentielle, 11(3):329–384, 1969.

John Bourke.

Codescent objects in 2-dimensional universal algebra.

PhD thesis, University of Sydney, 2010.

Adrian Miranda.

Internal categories.

Master's thesis, Macquarie University, 2018. Available at https://figshare.mq.edu.au/articles/ thesis/Internal_categories/19434626/1.

Ross Street.

Two-dimensional sheaf theory.

Journal of Pure and Applied Algebra, 23(3):251–270, 1982.

Yoneda structures from 2-toposes. Applied Categorical Structures, 15:259–323, 2007.