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ZFC and ETCS

ZFC
First order theory.
Well-founded trees.
Axiomatises “x P X”.

ETCS (Lawvere, 1964)
Assume the existence
of a category E
satisfying some
properties.
Axiomatises

X Y

Z

f

g˝f
g

We can do “naı̈ve” set
theory here.
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ETCS

E ( ETCS if:

It has finite limits.

It is cartesian closed.
It has a subobject classifier.
It has a natural numbers
object.
It is well-pointed.
It satisfies the external axiom
of choice.
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Examples

Assuming AOC:
Set ( ETCS.

Let λ be an uncountable, strong limit cardinal. Then
Setλ ( ETCS.

A trivial example:
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Cat1 is not well-pointed.
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Non-examples

For 1 ă λ ď ℵ0,
Setλ has no NNO.
Cat1 is not well-pointed.

Grp is not well pointed.
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ZFC in ETCS

Let E ( ETCS.
X P E ù sets.

1 Ñ X ù elements of X .
ΩX ù power set of X .
+ more...
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Large sets

ETCS corresponds to a fragment of ZFC.

Cannot form the set
ğ

nPN

fnpNq

where fn`1pX q :“ NfnpXq.

In ZFC ù replacement.
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ğ

yPg´1pzq

f ´1
pyq

To axiomatise classes and sets ù Joyal and Moerdijk’s
algebraic set theory.



Replacement

X Ě f ´1pyq

Y Ě g´1pzq Q y

Z Q z

f

gf

g

gf ´1
pzq “

ğ

yPg´1pzq

f ´1
pyq

To axiomatise classes and sets ù Joyal and Moerdijk’s
algebraic set theory.



Replacement

X Ě f ´1pyq

Y Ě g´1pzq Q y

Z Q z

f

gf

g

gf ´1
pzq “

ğ

yPg´1pzq

f ´1
pyq

To axiomatise classes and sets ù Joyal and Moerdijk’s
algebraic set theory.



Outline

1 Motivation

2 Review of ETCS

3 ET2CSC

4 2-Categories of Categories



Internal Categories

Definition
A small category is:

... C1 ˆC0 C1 C1 C0
m

p1

p2

d1

d0

i

Where C0,C1 P Set.
These are the objects of a 2-category Cat.



Internal Categories

Definition
Let E be a category with pullbacks.
A category internal to E is:

... C1 ˆC0 C1 C1 C0
m

p1

p2

d1

d0

i

Where C0,C1 P E.
These are the objects of a 2-category CatpEq.



Idea!

CatpSetq “ Cat ù E ( ETCS, then CatpEq « Cat.



Limits and Cartesian Closure

Theorem
1 E has finite limits iff CatpEq has finite 2-limits.
2 E is cartesian closed if and only if CatpEq is

2-cartesian closed. ([BE69] [Mir18])

The proofs use:
The theory of limit sketches.
The nerve N : CatpEq Ñ sE

disc % p´q0 % indisc : E Ñ CatpEq
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Full Subobject Classifiers

Full monos are defined representably in K.

Definition
Let K be a 2-category. A full subobject classifier is:

a full monomorphism J : 1 Ñ Ω

such that:
@ full monos i : A Ñ B, D!χi : B Ñ Ω making the
following square a pullback.

A 1

B Ω.

!

i
{

J

χi



FSOC example

For K “ Cat, the full subobject classifier is given by
1 Ñ I :“ t0 – 1u.

A 1

B I

i
{

χ

Note that I “ indiscpt0,1uq.
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Full Subobject Classifiers

Theorem
Let E be a category with finite limits. TFAE

E has a subobject classifier.
CatpEq has a full subobject classifier.

Proof. (Sketch)
1 Ñ Ω SOC for E ù 1 Ñ indiscpΩq is FSOC for CatpEq.
1 Ñ Ω FSOC for CatpEq ù 1 Ñ Ω0 SOC for E.
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Natural Numbers Object

Definition

Let K be a 2-category with a terminal object 1.

1 N Nz s

is called a natural numbers object in K if it is a natural
numbers object for the underlying 1-category of K and if:

1 N N

X X

f

f 1

z s

uu1 uu1

g

D!ϕ D!ϕ
α



NNO example

For K “ Cat, the natural numbers object is given by
discpNq.

1 N N

A A

a

a1

z s

uu1 uu1

F
f



NNO example

For K “ Cat, the natural numbers object is given by
discpNq.
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Natural Numbers Object

Theorem
Let E be a category with finite limits. TFAE

E has a natural numbers object.
CatpEq has a natural numbers object.

Proof. (Sketch)
pN, z, sq NNO for E ù pdiscpNq,discpzq,discpsqq is a
NNO for CatpEq.
pN, z, sq NNO in CatpEq ù pN0, z0, s0q is an NNO for E.
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Well-pointedness
Let 2 denote the walking arrow in Cat.

Definition

A 2-category K is called 2-well-pointed if the following
conditions hold.

1 K has a terminal object 1.
2 The copower 2 d 1 exists in K.
3 The family containing just 2 d 1 is a generator for the

2-category K.

For K “ Cat, 2 d A :“ 2 ˆ A.

2 A B
@f F

G

Ff “ Gf ùñ F “ G
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Well-pointedness

Theorem
Let E be a lextensive, cartesian closed category. TFAE

E is well-pointed.
CatpEq is 2-well-pointed.

We construct an internal free living arrow 2E.
As a stepping stone in our proof, we also show that E is
lextensive iff CatpEq is lextensive in the 2 dimensional
sense.
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Axiom of Choice

Proposition
Let E be a category with pullbacks. TFAE:

1 The external axiom of choice holds in E.
2 Any fully faithful and epi-on-objects functor internal to

E has a section in the 2-category CatpEq.



Axiom of Choice

Lemma
There is an (epi, mono) orthogonal factorisation system
on E if and only if there is an

pepi-on-objects, full monomorphismq

orthogonal factorisation system on CatpEq.

pL,Rq on E ù

pL on objects,R on objects and fully faithfulq on CatpEq.

Definition ([Str82])
A morphism in a 2-category K which is left orthogonal to
all fully faithful monomorphisms in K will be called acute.
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Axiom of Choice

Definition

Say that a 2-category K satisfies the categorified axiom
of choice if any acute fully faithful morphism has a section.



Axiom of Choice

Theorem

Let E be a category with pullbacks, products and an (epi,
mono)-orthogonal factorisation system. TFAE:

1 The category E satisfies the external axiom of choice.
2 The 2-category CatpEq satisfies the categorified

axiom of choice.



Summary

For the 1-category E:
finite limits
cartesian closure
subobject classifier
natural numbers object
well-pointed
axiom of choice

For the 2-category CatpEq:
finite 2-limits
cartesian closure
full subobject classifier
natural numbers object
2-well-pointed
categorified axiom of
choice

Can we replace CatpEq with K?
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Bourke’s characterisation of CatpEq

Theorem ([Bou10])
If E is a category with pullbacks then the 2-category
K :“ CatpEq satisfies the conditions listed below.
Conversely, if K satisfies the conditions listed below, then
there is a 2-equivalence K » Cat pEq where
E :“ Disc pKq.

1 K has pullbacks and powers by 2.
2 K has codescent objects of categories internal to K

whose source and target maps form a two-sided
discrete fibration.

3 Codescent morphisms are effective in K.
4 Discrete objects in K are projective.
5 For every object A P K, there is a projective object

P P K and a codescent morphism c : P Ñ A.



Bourke’s characterisation of CatpEq

Theorem ([Bou10])
If E is a category with pullbacks then the 2-category
K :“ CatpEq satisfies Bourke’s axioms. Conversely, if K
satisfies Bourke’s axioms, then there is a 2-equivalence
K » Cat pEq where E :“ Disc pKq.



ET2CSC

Definition

We say that the 2-category K models the elementary
theory of the 2-category of small categories (ET2CSC) if
the following properties hold:

1 It satisfies Bourke’s axioms.
2 It has a terminal object.
3 It is cartesian closed.
4 It is 2-well-pointed.
5 It has a natural numbers object.
6 It has a full subobject classifier.
7 It satisfies the categorified axiom of choice.

We write K ( ET2CSC



Examples

Assuming the axiom of choice:
Cat ( ET2CSC.

Let λ be an uncountable, strong limit cardinal. Then
CatpSetλq ( ET2CSC.

Trivial example:
1 “ Catp1q ( ET2CSC.
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Let λ be an uncountable, strong limit cardinal. Then
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Trivial example:
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Main Result

Theorem
1 Let E be a category. Then E ( ETCS if and only if

CatpEq ( ET2CSC, and in this case
E » DiscpCatpEqq.

2 Let K be a 2-category. Then K ( ET2CSC if and
only if Disc pKq ( ETCS, and in this case
K » CatpDisc pKqq.

3 This extends to a biequivalence

ETCS „ ET2CSC
Catp´q

Discp´q
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Elementary 2 toposes

For the 1-category E:
finite limits
cartesian closure
subobject classifier

is an elementary 1-topos!

For the 2-category CatpEq

finite 2-limits
cartesian closure
full subobject classifier

... is not an elementary
2-topos in the sense of
[Web07].
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Discrete Opfibrations

A discrete opfibration in Cat is

A a

B b F paq

F

In a 2-category K, we define discrete opfibrations
representably.
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Discrete Opfibration Classifiers

Recall the Grothendieck construction:

elApF q Set˚

A Set

{
p

F

elA : CATpA,Setq Ñ DopFib{A.



Discrete Opfibration Classifiers

Definition ([Web07])
A discrete opfibration classifier for K consists of a
discrete opfibration p : S˚ Ñ S such that for any X P K,
the functor elX : K pX ,Sq Ñ Dopfib{X which sends
f P KpX ,Sq to the pullback of p along f is fully faithful.



2-toposes

Definition ([Web07])
An elementary 2-topos is a 2-category K such that

It has finite 2-limits.
It is cartesian closed.
It has a duality involution.
It has a discrete opfibration classifier.

So Cat is not a 2-topos, but rather CAT is.
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Replacement

In SET :

X Ě f ´1pyq

Y Ě g´1pzq Q y

Z Q z

f

gf

g



2D replacement

In CAT :

A

B

C

F

GF

G



2D replacement

Shulman: if K has a discrete opfibration classifier
p : S˚ Ñ S.

X

Y

Z

F

GF

G

This is a 2-categorical axiom of replacement!



2-categories of categories

Definition
Let K be a 2-category with a discrete opfibration classifier
p : S˚ Ñ S, and let Kσ ãÑ K denote the
full-sub-2-category of small objects. Then pK,p : S˚ Ñ Sq

is said to be a 2-category of categories if the following
conditions hold.

1 Kσ,K ( ET2CSC .
2 Kσ ãÑ K is a morphism of models of ET2CSC.
3 Small discrete opfibrations are closed under

composition.



Example

Let µ be an inaccessible cardinal and λ ą µ be a strong
limit cardinal.

Write Set :“ Setµ, Cat :“ CatpSetq and
CAT :“ CatpSetλq. Then:

pCAT,p : Set˚ Ñ Setq is a 2-category of categories.

Cat ãÑ CAT
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