The Elementary Theory of the
2-Category of Small Categories

Calum Hughes

j-.w.w. Adrian Miranda

5th June 2024

MANCHESTER
1824

The University of Manchester




0 Motivation
e Review of ETCS
© ET2CcsC

6 2-Categories of Categories



0 Motivation
© Review of ETCS
© ET2CSC

@ 2-Categories of Categories



ZFC
@ First order theory.
@ Well-founded trees.
@ Axiomatises “x € X".
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ETCS and ET2CSC

ET2CSC ETCS (Lawvere, 1964)
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@ 2-Categories of Categories



& = ETCS if:
@ It has finite limits.
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@ It has finite limits.
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ETCS

& = ETCS if:

@ It has finite limits.
@ It is cartesian closed.
@ It has a subobject classifier.

@ It has a natural numbers
object.
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ETCS

& = ETCS if:

@ It has finite limits.

@ It is cartesian closed.

@ It has a subobject classifier.

@ It has a natural numbers 12X, A—2B
object. g

@ It is well-pointed. fx=gx = f=g



ETCS

& = ETCS if:

It has finite limits.
It is cartesian closed.
It has a subobject classifier.

It has a natural numbers
object.

It is well-pointed.

It satisfies the external axiom
of choice.



Assuming AOC:
@ Set = ETCS.



Assuming AOC:
@ Set = ETCS.

@ Let A\ be an uncountable, strong limit cardinal. Then
Set, = ETCS.



Examples

Assuming AOC:
@ Set = ETCS.

@ Let A\ be an uncountable, strong limit cardinal. Then
Set, = ETCS.

A trivial example:
e 1= ETCS.



@ For1 < A\ <N,
Set, has no NNO.



@ For1 < X\ <Ny,

Set, has no NNO. F
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@ For1 < X\ <Ny,

Set, h ) F
A.asnoNNO. o .y —— g
@ Cat; is not well-pointed. G

Fi=Gf — F=G



@ For1 < A\ <Ny,

Set, h . ! f
A.asnoNNO. 1 3. 6——H
@ Cat, is not well-pointed. Y

@ Grp is not well pointed. fe=ge=f=g
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Let & = ETCS.
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Let & = ETCS.
@ X e & v sets.
@ 1 - X «~ elements of X.
@ OX v power set of X.
@ + more...



ETCS corresponds to a fragment of ZFC.



ETCS corresponds to a fragment of ZFC.
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ETCS corresponds to a fragment of ZFC.

Cannot form the set

|| ()

neN

where £, 1(X) := N(X),

In ZFC - replacement.
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To axiomatise classes and sets «~ Joyal and Moerdijk’s
algebraic set theory.
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@ 2-Categories of Categories



Internal Categories

Definition
A small category is:
P di
S d C1 X Cy C1 n > C1 < i Co
P2 ’ do ’

Where Cy, C; € Set.
These are the objects of a 2-category Cat.




Internal Categories

Definition
Let & be a category with pullbacks.
A category internal to & is:

p1 di
m § i ’

0o = C1 X Co C1 > C1 < Co
p2 d

Where Cy, C; € .
These are the objects of a 2-category Cat(€).




Cat(Set) = Cat « & = ETCS, then Cat(€) ~ Cat.



Limits and Cartesian Closure

Theorem
@ & has finite limits iff Cat(€) has finite 2-limits.

©Q & is cartesian closed if and only if Cat(§) is
2-cartesian closed. ([BE69] [Mir18])




Limits and Cartesian Closure

Theorem
@ & has finite limits iff Cat(€) has finite 2-limits.

©Q & is cartesian closed if and only if Cat(§) is
2-cartesian closed. ([BE69] [Mir18])

The proofs use:
@ The theory of limit sketches.
@ The nerve N : Cat(6) — sé&
@ disc 4 (—)o - indisc : & — Cat(€)



Full Subobject Classifiers

Full monos are defined representably in .

Definition

Let A be a 2-category. A full subobject classifier is:
@ a full monomorphism T :1 - Q

such that:

@ VY full monosi: A— B, dly;: B — Q making the
following square a pullback.
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For # = Cat, the full subobject classifier is given by
1->1:={0=x=1}.



For # = Cat, the full subobject classifier is given by
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For # = Cat, the full subobject classifier is given by
1->1:={0=x=1}.
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Note that I = indisc({0,1}).



Full Subobject Classifiers

Theorem

Let & be a category with finite limits. TFAE
@ & has a subobject classifier.
@ Cat(&) has a full subobject classifier.



Full Subobject Classifiers

Theorem

Let & be a category with finite limits. TFAE
@ & has a subobject classifier.
@ Cat(&) has a full subobject classifier.

Proof. (Sketch)
1 — Q SOC for § »~» 1 — indisc(Q2) is FSOC for Cat(8).
1 — Q FSOC for Cat(§) ~~» 1 — Q, SOC for &.



Natural Numbers Object

Definition

Let & be a 2-category with a terminal object 1.

123N 23N

is called a natural numbers objectin % if it is a natural
numbers object for the underlying 1-category of A and if:
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For & = Cat, the natural numbers object is given by
disc(N).
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For & = Cat, the natural numbers object is given by
disc(N).
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Natural Numbers Object

Theorem

Let & be a category with finite limits. TFAE
@ & has a natural numbers object.
@ Cat(&) has a natural numbers object.



Natural Numbers Object

Theorem

Let & be a category with finite limits. TFAE
@ & has a natural numbers object.
@ Cat(&) has a natural numbers object.

Proof. (Sketch)

(N, z,s) NNO for & ~ (disc(N), disc(z),disc(s)) is a
NNO for Cat(é).

(N, z,s) NNO in Cat(6) ~ (N, 24, S,) is an NNO for &.



Well-pointedness
Let 2 denote the walking arrow in Cat.
Definition
A 2-category % is called 2-well-pointed if the following
conditions hold.
@ .« has a terminal object 1.

© The copower 2 ©® 1 exists in .

© The family containing just 2 ® 1 is a generator for the
2-category X.



Well-pointedness

Let 2 denote the walking arrow in Cat.
Definition
A 2-category % is called 2-well-pointed if the following
conditions hold.
@ .« has a terminal object 1.

© The copower 2 ©® 1 exists in .

© The family containing just 2 ® 1 is a generator for the
2-category X.

For X =Cat, 204 :=2 x 4.

vf F
2 —— A . 9B
G

FfF=Gf = F=G



Well-pointedness

Theorem

Let & be a lextensive, cartesian closed category. TFAE
@ & is well-pointed.
@ Cat(8) is 2-well-pointed.
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Theorem
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@ & is well-pointed.
@ Cat(8) is 2-well-pointed.

We construct an internal free living arrow 2;.



Well-pointedness

Theorem

Let & be a lextensive, cartesian closed category. TFAE
@ & is well-pointed.
@ Cat(8) is 2-well-pointed.

We construct an internal free living arrow 2;.

As a stepping stone in our proof, we also show that & is
lextensive iff Cat(€) is lextensive in the 2 dimensional
sense.



Axiom of Choice

Proposition
Let & be a category with pullbacks. TFAE:
@ The external axiom of choice holds in &.

@ Any fully faithful and epi-on-objects functor internal to
& has a section in the 2-category Cat(&).



Axiom of Choice

Lemma |

There is an (epi, mono) orthogonal factorisation system
on & if and only if there is an

(epi-on-objects, full monomorphism)

orthogonal factorisation system on Cat(&).
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There is an (epi, mono) orthogonal factorisation system
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orthogonal factorisation system on Cat(&).
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Axiom of Choice

Lemma

There is an (epi, mono) orthogonal factorisation system
on & if and only if there is an

(epi-on-objects, full monomorphism)
orthogonal factorisation system on Cat(&).

(L, R)0Nn & v
(£ on objects, Z on objects and fully faithful) on Cat(€).

Definition ([Str82]) |

A morphism in a 2-category # which is left orthogonal to
all fully faithful monomorphisms in % will be called acute.



Axiom of Choice

Definition |

Say that a 2-category & satisfies the categorified axiom
of choice if any acute fully faithful morphism has a section.

v



Axiom of Choice

Theorem

Let & be a category with pullbacks, products and an (epi,
mono)-orthogonal factorisation system. TFAE:

@ The category & satisfies the external axiom of choice.

© The 2-category Cat(§) satisfies the categorified
axiom of choice.



Summary

For the 1-category &: For the 2-category Cat(6):
@ finite limits @ finite 2-limits
@ cartesian closure @ cartesian closure
@ subobiject classifier @ full subobject classifier
@ natural numbers object @ natural numbers object
@ well-pointed @ 2-well-pointed
@ axiom of choice @ categorified axiom of

choice




Summary

For the 1-category &: For the 2-category Cat(6):
@ finite limits @ finite 2-limits
@ cartesian closure @ cartesian closure
@ subobiject classifier @ full subobject classifier
@ natural numbers object @ natural numbers object
@ well-pointed @ 2-well-pointed
@ axiom of choice @ categorified axiom of

choice

Can we replace Cat(&) with ' ?



Bourke’s characterisation of Cat(&)

Theorem ([Bou10])

If& is a category with pullbacks then the 2-category

K = Cat(&) satisfies the conditions listed below.
Conversely, if # satisfies the conditions listed below, then
there is a 2-equivalence # ~ Cat (§) where
& := Disc (X).

@ .« has pullbacks and powers by 2.

@ A has codescent objects of categories internal to A
whose source and target maps form a two-sided
discrete fibration.

@ Codescent morphisms are effective in K .
© Discrete objects in K are projective.

@ Forevery object A € K, there is a projective object
P e % and a codescent morphismc : P — A.



Bourke’s characterisation of Cat(&)

Theorem ([Bou10])

If& is a category with pullbacks then the 2-category

K = Cat(&) satisfies Bourke's axioms. Conversely, if £
satisfies Bourke’s axioms, then there is a 2-equivalence
K ~ Cat (&) where & := Disc (X).




ET2CSC

Definition

We say that the 2-category A models the elementary
theory of the 2-category of small categories (ET2CSC) if
the following properties hold:

@ It satisfies Bourke’s axioms.

@ It has a terminal object.

© ltis cartesian closed.

Q ltis 2-well-pointed.

@ It has a natural numbers object.

© It has a full subobject classifier.

@ It satisfies the categorified axiom of choice.

We write A = ET2CSC



Assuming the axiom of choice:
@ Cat = ET2CSC.



Examples

Assuming the axiom of choice:
@ Cat = ET2CSC.

@ Let A be an uncountable, strong limit cardinal. Then
Cat(Set,) = ET2CSC.



Examples

Assuming the axiom of choice:
@ Cat = ET2CSC.

@ Let A be an uncountable, strong limit cardinal. Then
Cat(Set,) = ET2CSC.

Trivial example:
@ 1= Cat(1) = ET2CSC.



Main Result

Theorem

@ Let& be a category. Then & = ETCS if and only if
Cat(€) = ET2CSC, and in this case
& ~ Disc(Cat(6)).

@ Let K be a?2-category. Then K = ET2CSC if and
only if Disc (X)) = ETCS, and in this case
K ~ Cat(Disc (K)).

© This extends to a biequivalence

Disc(—)

ETCS ©  ~  ET2CSC
Cat(—) ’
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6 2-Categories of Categories



Elementary 2 toposes

For the 1-category &:

@ finite limits

@ cartesian closure

@ subobiject classifier
is an elementary 1-topos!




Elementary 2 toposes

For the 1-category &: For the 2-category Cat(6)
@ finite limits @ finite 2-limits
@ cartesian closure @ cartesian closure
@ subobiject classifier @ full subobiject classifier
is an elementary 1-topos! ... is not an elementary

2-topos in the sense of
[Web07].




A discrete opfibration in Cat is

I |

B b—— F(a)



A discrete opfibration in Cat is



Discrete Opfibrations

A discrete opfibration in Cat is

o 18 ------4 > a
e |
%B b —— F(a)

In a 2-category ', we define discrete opfibrations
representably.



Discrete Opfibration Classifiers

Recall the Grothendieck construction:

e|Qg(F) —_— Set*

Lok
dﬁSet

el : CAT(s4, Set) — DopFib/.



Discrete Opfibration Classifiers

Definition ([Web07])

A discrete opfibration classifier for # consists of a
discrete opfibration p: S, — S such that for any X € &,
the functor el : % (X, S) — Dopfib/X which sends

fe X (X,S) to the pullback of p along f is fully faithful.



2-toposes

Definition ([Web07])
An elementary 2-topos is a 2-category A such that
@ It has finite 2-limits.
@ ltis cartesian closed.
@ It has a duality involution.
@ It has a discrete opfibration classifier.



2-toposes

Definition ([Web07])
An elementary 2-topos is a 2-category A such that
@ It has finite 2-limits.
@ ltis cartesian closed.
@ It has a duality involution.
@ It has a discrete opfibration classifier.

So Cat is not a 2-topos, but rather CAT is.



In SET :

Ev4



In CAT :



2D replacement

Shulman: if & has a discrete opfibration classifier
p:S,—S.
X
|F
GF| Y
|e
V4

This is a 2-categorical axiom of replacement!



2-categories of categories

Definition |
Let A be a 2-category with a discrete opfibration classifier
p: S, — S, and let X, — K denote the
full-sub-2-category of small objects. Then (#,p: S, — S)
is said to be a 2-category of categories if the following
conditions hold.

Q@ #,, # = ET2CSC.

@ A, — A is a morphism of models of ET2CSC.

© Small discrete opfibrations are closed under
composition.



(CAT, p : Set. — Set) is a 2-category of categories.

Cat — CAT



Example

Let 1 be an inaccessible cardinal and A > i be a strong
limit cardinal.

Write Set := Set,,, Cat := Cat(Set) and
CAT := Cat(Set,). Then:

(CAT, p : Set, — Set) is a 2-category of categories.
Cat — CAT



@ 2CoC satisfy Shulman’s 2D AST.



@ 2CoC satisfy Shulman’s 2D AST.
@ Free cocompletions in 2CoC.



@ 2CoC satisfy Shulman’s 2D AST.
@ Free cocompletions in 2CoC.
@ A more genuinely 2D NNO.



Work In Progress

@ 2CoC satisfy Shulman’s 2D AST.
@ Free cocompletions in 2CoC.

@ A more genuinely 2D NNO.

@ Coequalisers in ET2CSC.



ArXiv link

The Elementary Theory of the 2-Category of Small
Categories, written with Adrian Miranda, 2024. To appear
in TAC: special volume for Bill Lawvere.

https://arxiv.org/abs/2403.03647


https://arxiv.org/abs/2403.03647
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