The Elementary Theory of the 2-Category of Small Categories

Calum Hughes

j.w.w. Adrian Miranda

5th June 2024

The University of Manchester

Outline

[Review of ETCS](#page-6-0)

ZFC and ETCS

ZFC

- First order theory.
- Well-founded trees.
- Axiomatises " $x \in X$ ".

ZFC and ETCS

ZFC

- First order theory.
- Well-founded trees.
- \bullet Axiomatises " $x \in X$ ".

ETCS (Lawvere, 1964)

- Assume the existence of a category $\mathscr E$ satisfying some properties.
- **Axiomatises**

● We can do "naïve" set theory here.

ETCS and ET2CSC

ET2CSC

- Assume the existence of a 2-category K satisfying some properties.
- **•** Axiomatises

ETCS (Lawvere, 1964)

- Assume the existence of a category $\&$ satisfying some properties.
- **•** Axiomatises

● We can do "naïve" set theory here.

Outline

- $\mathscr{E} \models$ ETCS if:
- It has finite limits.

- $\mathscr{E} \models$ ETCS if:
- **o** It has finite limits.
- It is cartesian closed.

 $X, Y \in \mathcal{E} \longrightarrow X^Y \in \mathcal{E}$ $[Y \times Z, X] \cong [Z, X^Y]$

$\&\varepsilon$ ETCS if:

- **o** It has finite limits.
- It is cartesian closed.
- It has a subobject classifier.

$\mathscr{E} \models$ ETCS if:

- It has finite limits.
- It is cartesian closed.
- It has a subobject classifier.
- It has a natural numbers object.

$\mathscr{E} \models$ ETCS if:

- **o** It has finite limits.
- It is cartesian closed.
- It has a subobject classifier.
- It has a natural numbers object.
- It is well-pointed.

$$
1 \xrightarrow{\forall x} A \xrightarrow{f} B
$$

$$
fx = gx \implies f = g
$$

$\mathscr{E} \models$ ETCS if:

- **o** It has finite limits.
- It is cartesian closed.
- It has a subobject classifier.
- **o** It has a natural numbers object.
- \bullet It is well-pointed.
- **•** It satisfies the external axiom of choice.

Assuming AOC: \bullet **Set** \models ETCS. Assuming AOC:

- \bullet **Set** \models ETCS.
- Let λ be an uncountable, strong limit cardinal. Then $Set_{\lambda} \models ETCS.$

Assuming AOC:

- \bullet **Set** \models ETCS.
- Let λ be an uncountable, strong limit cardinal. Then $Set_{\lambda} \models ETCS.$

A trivial example:

 \bullet 1 \models ETCS.

• For $1 < \lambda \leq \aleph_0$, **Set**^λ has no NNO.

- For $1 < \lambda \leq \aleph_0$, Set_{λ} has no NNO.
- Cat₁ is not well-pointed.

- For $1 < \lambda \leq \aleph_0$, Set_{λ} has no NNO.
- \bullet Cat₁ is not well-pointed.

- For $1 < \lambda \leq \aleph_0$, \mathbf{Set}_{λ} has no NNO.
- \bullet Cat₁ is not well-pointed.
- Grp is not well pointed.

$$
1 \xrightarrow{\exists! e} G \xrightarrow{f} H
$$

$$
f e = g e \Rightarrow f = g
$$

Let $\mathscr{E} \models$ ETCS. \bullet X \in & \rightsquigarrow sets.

Let $\mathscr{E} \models$ ETCS.

- $\bullet X \in \mathscr{E} \longrightarrow$ sets.
- \bullet 1 \rightarrow X \rightsquigarrow elements of X.

Let \mathscr{E} = ETCS.

- \bullet $X \in \mathscr{E}$ was sets.
- \bullet 1 \rightarrow X \rightsquigarrow elements of X.
- \bullet Ω^X \rightsquigarrow power set of X.

Let \mathscr{E} = ETCS.

- \bullet $X \in \mathscr{E}$ was sets.
- \bullet 1 \rightarrow X \rightsquigarrow elements of X.
- \bullet Ω^X \rightsquigarrow power set of X.
- \bullet + more...

ETCS corresponds to a fragment of ZFC.

ETCS corresponds to a fragment of ZFC.

Cannot form the set

$$
\bigsqcup_{n\in\mathbb{N}}f_n(\mathbb{N})
$$

where $f_{n+1}(X) := \mathbb{N}^{f_n(X)}$.

ETCS corresponds to a fragment of ZFC.

Cannot form the set

$$
\bigsqcup_{n\in\mathbb{N}}f_n(\mathbb{N})
$$

where $f_{n+1}(X) := \mathbb{N}^{f_n(X)}$.

In ZFC \leadsto replacement.

Replacement

Replacement

$$
gf^{-1}(z) = \bigsqcup_{y \in g^{-1}(z)} f^{-1}(y)
$$

Replacement

To axiomatise classes and sets \leadsto Joyal and Moerdijk's algebraic set theory.

Outline

Definition

A small category is:

$$
\cdots \longrightarrow C_1 \times_{C_0} C_1 \xrightarrow{\frac{p_1}{m}} C_1 \xrightarrow{\frac{d_1}{i}} C_0
$$

Where $C_0, C_1 \in$ Set. These are the objects of a 2-category Cat.

Definition Let $\mathscr E$ be a category with pullbacks. A category internal to $\&$ is:

$$
\cdots \longrightarrow C_1 \times_{C_0} C_1 \xrightarrow{\frac{p_1}{m}} C_1 \xrightarrow{\frac{d_1}{i}} C_0
$$

Where $C_0, C_1 \in \mathcal{E}$. These are the objects of a 2-category $Cat(\mathcal{E})$.

Cat(Set) = **Cat** $\leadsto \& \vDash$ ETCS, then **Cat**($\&$) \approx **Cat.**

Limits and Cartesian Closure

Theorem

- **1** $\&$ *has finite limits iff* **Cat**($\&$) *has finite* 2*-limits.*
- 2 & *is cartesian closed if and only if* Cat($\&$) *is* 2*-cartesian closed. ([\[BE69\]](#page-88-0) [\[Mir18\]](#page-88-1))*

Theorem

- **1** & has finite limits iff **Cat**($\&$) has finite 2*-limits.*
- 2 $\&$ *is cartesian closed if and only if Cat*($\&$) *is* 2*-cartesian closed. ([\[BE69\]](#page-88-0) [\[Mir18\]](#page-88-1))*

The proofs use:

- The theory of limit sketches.
- **o** The nerve $N:$ **Cat** $(\mathscr{E}) \rightarrow$ **s** \mathscr{E}
- disc $-(-)$ ₀ $-$ indisc : $\mathscr{E} \rightarrow$ Cat (\mathscr{E})
Full Subobject Classifiers

Full monos are defined representably in $\mathcal{K}.$

Definition

Let K be a 2-category. A *full subobject classifier* is:

• a full monomorphism $\top : \mathbf{1} \to \Omega$ such that:

 \forall full monos $i: \mathcal{A} \to \mathcal{B}$, $\exists ! \chi_i: \mathcal{B} \to \underline{\Omega}$ making the following square a pullback.

$$
\begin{array}{ccc}\nA & \xrightarrow{!} & \mathbf{1} \\
\downarrow & & \downarrow \\
B & \xrightarrow{x_i} & \Omega.\n\end{array}
$$

For $K =$ **Cat**, the full subobject classifier is given by $1 \rightarrow \mathbb{I} := \{0 \geq 1\}.$

For $\mathcal{K} =$ **Cat**, the full subobject classifier is given by $1 \rightarrow \mathbb{I} := \{0 \geq 1\}.$

For $K =$ **Cat**, the full subobject classifier is given by $1 \to \mathbb{I} := \{0 \ge 1\}.$

Note that $\mathbb{I} = \text{indices}(\{0, 1\})$.

Let & be a category with finite limits. TFAE

- E *has a subobject classifier.*
- **Cat**($\&$) has a full subobject classifier.

Let $\&$ be a category with finite limits. TFAE

- E *has a subobject classifier.*
- **Cat**($\&$) has a full subobject classifier.

Proof. (Sketch) **1** → Ω SOC for \mathscr{E} \longrightarrow **1** \rightarrow **indisc**(Ω) is FSOC for **Cat**(\mathscr{E}). **1** $\rightarrow \Omega$ FSOC for **Cat** $(\mathscr{E}) \rightsquigarrow$ **1** $\rightarrow \Omega_0$ SOC for \mathscr{E} .

Natural Numbers Object

Definition

Let X be a 2-category with a terminal object 1.

$$
\underline{1}\stackrel{z}{\longrightarrow}\underline{N}\stackrel{s}{\longrightarrow}\underline{N}
$$

is called a *natural numbers object* in K if it is a natural numbers object for the underlying 1-category of K and if:

For $\mathcal{K} = \mathbf{Cat}$, the natural numbers object is given by $disc(N).$

For $\mathcal{K} = \mathbf{Cat}$, the natural numbers object is given by $disc(N).$

Let $\&$ be a category with finite limits. TFAE

- E *has a natural numbers object.*
- **Cat**(\mathcal{E}) has a natural numbers object.

Let $\&$ be a category with finite limits. TFAE

- E *has a natural numbers object.*
- **Cat**($\&$) has a natural numbers object.

Proof. (Sketch) (N, z, s) NNO for $\mathscr{E} \rightsquigarrow (\text{disc}(N), \text{disc}(z), \text{disc}(s))$ is a NNO for $Cat(\mathcal{E})$. $(\underline{N}, \underline{z}, \underline{s})$ NNO in **Cat** $(\mathscr{E}) \leadsto (\underline{N}_0, \underline{z}_0, \underline{s}_0)$ is an NNO for \mathscr{E} .

Well-pointedness

Let 2 denote the walking arrow in Cat.

Definition

A 2-category $\mathcal X$ is called 2-well-pointed if the following conditions hold.

- \bullet *X* has a terminal object 1.
- **2** The copower $2 \odot 1$ exists in \mathcal{K} .
- \bullet The family containing just $2 \odot 1$ is a generator for the 2-category K .

Well-pointedness

Let 2 denote the walking arrow in Cat.

Definition

A 2-category $\mathcal X$ is called 2-well-pointed if the following conditions hold.

- \bullet *X* has a terminal object 1.
- **2** The copower $2 \odot 1$ exists in \mathcal{H} .
- \bullet The family containing just $2 \odot 1$ is a generator for the 2-category K .

For $\mathcal{K} = \text{Cat}$, $2 \odot \mathcal{A} := 2 \times \mathcal{A}$.

$$
2 \xrightarrow{\forall f} \mathcal{A} \xrightarrow{\qquad \qquad F} \mathcal{B}
$$

 $Ff = Gf \implies F = G$

Let & be a lextensive, cartesian closed category. TFAE

- E *is well-pointed.*
- **Cat**($\&$) is 2*-well-pointed.*

Let $\&$ be a lextensive, cartesian closed category. TFAE

- E *is well-pointed.*
- Cat($\&$) is 2*-well-pointed.*

We construct an internal free living arrow 2₂.

Let $\&$ be a lextensive, cartesian closed category. TFAE

- E *is well-pointed.*
- **Cat**($\&$) is 2*-well-pointed.*

We construct an internal free living arrow 2₂. As a stepping stone in our proof, we also show that ε is lextensive iff $Cat(\mathcal{E})$ is lextensive in the 2 dimensional sense.

Proposition

Let ε be a category with pullbacks. TFAE:

- \bullet The external axiom of choice holds in ϵ .
- ² Any fully faithful and epi-on-objects functor internal to $\&$ has a section in the 2-category $Cat(\&)$.

Lemma

There is an (epi, mono) orthogonal factorisation system on E *if and only if there is an*

(epi-on-objects, full monomorphism)

orthogonal factorisation system on Cat($\&$).

Lemma

There is an (epi, mono) orthogonal factorisation system on E *if and only if there is an*

(epi-on-objects, full monomorphism)

orthogonal factorisation system on **Cat**($\&$).

 $(\mathscr{L}, \mathscr{R})$ on $\mathscr{E} \rightsquigarrow$ $P(\mathcal{L}$ on objects, \mathcal{R} on objects and fully faithful) on **Cat** (\mathcal{E}) .

Lemma

There is an (epi, mono) orthogonal factorisation system on E *if and only if there is an*

(epi-on-objects, full monomorphism)

orthogonal factorisation system on **Cat**($\&$).

 $(\mathscr{L}, \mathscr{R})$ on $\mathscr{E} \rightsquigarrow$ $P(\mathcal{L}$ on objects, \mathcal{R} on objects and fully faithful) on **Cat** (\mathcal{E}) .

Definition ([\[Str82\]](#page-89-0))

A morphism in a 2-category K which is left orthogonal to all fully faithful monomorphisms in K will be called *acute*.

Definition

Say that a 2-category K satisfies the *categorified axiom of choice* if any acute fully faithful morphism has a section.

Let $\&$ be a category with pullbacks, products and an (epi, *mono)-orthogonal factorisation system. TFAE:*

- **1** The category $\&$ satisfies the external axiom of choice.
- **2** *The* 2-category **Cat**(\mathscr{E}) satisfies the categorified *axiom of choice.*

Summary

For the 1-category $\&$:

- **•** finite limits
- **•** cartesian closure
- subobject classifier
- natural numbers object
- well-pointed
- **•** axiom of choice

For the 2-category $Cat(\mathscr{E})$:

- **o** finite 2-limits
- **e** cartesian closure
- full subobject classifier
- natural numbers object
- 2-well-pointed
- categorified axiom of choice

Summary

For the 1-category $\&$:

- **•** finite limits
- **•** cartesian closure
- subobject classifier
- natural numbers object
- well-pointed
- **•** axiom of choice

For the 2-category $Cat(\mathscr{E})$:

- **o** finite 2-limits
- **e** cartesian closure
- full subobject classifier
- natural numbers object
- 2-well-pointed
- categorified axiom of choice

Theorem ([\[Bou10\]](#page-88-0))

If E *is a category with pullbacks then the* 2*-category* $\mathcal{K} := \text{Cat}(\mathcal{E})$ satisfies the conditions listed below. *Conversely, if* K *satisfies the conditions listed below, then there is a 2-equivalence* $K \simeq$ **Cat** (\mathscr{E}) *where* $\mathscr{E} := \text{Disc}(\mathscr{K})$.

- ¹ K *has pullbacks and powers by* **2***.*
- 2 K has codescent objects of categories internal to $\mathcal K$ *whose source and target maps form a two-sided discrete fibration.*
- **3** *Codescent morphisms are effective in* K .
- **4** *Discrete objects in* K *are projective.*
- **5** *For every object* $A \in \mathcal{K}$, there is a projective object $P \in \mathcal{K}$ and a codescent morphism $c : P \rightarrow A$.

Theorem ([\[Bou10\]](#page-88-0))

If E *is a category with pullbacks then the* 2*-category* $\mathcal{K} := \text{Cat}(\mathcal{E})$ satisfies Bourke's axioms. Conversely, if \mathcal{K} *satisfies Bourke's axioms, then there is a* 2*-equivalence* $K \simeq$ **Cat** (\mathscr{E}) where $\mathscr{E} :=$ **Disc** (\mathscr{K}) .

Definition

We say that the 2-category K models the *elementary theory of the* 2*-category of small categories* (ET2CSC) if the following properties hold:

- **1** It satisfies Bourke's axioms.
- 2 It has a terminal object.
- **3** It is cartesian closed.
- **4** It is 2-well-pointed.
	- **b** It has a natural numbers object.
	- 6 It has a full subobject classifier.
	- **7** It satisfies the categorified axiom of choice.

We write $\mathcal{K} \vDash$ ET2CSC

Assuming the axiom of choice:

 \bullet **Cat** \models **ET2CSC.**

Assuming the axiom of choice:

- \bullet **Cat** \models **ET2CSC.**
- Let λ be an uncountable, strong limit cardinal. Then $Cat(Set_\lambda) \models ETZCSC$.

Assuming the axiom of choice:

- \bullet Cat \models ET2CSC.
- Let λ be an uncountable, strong limit cardinal. Then $Cat(Set_\lambda) \models ETZCSC$.

Trivial example:

$$
\bullet \ \ 1 = \text{Cat}(1) \models \text{ET2CSC}.
$$

- **1** Let $\&$ be a category. Then $\&$ \models ETCS if and only if $Cat(\mathcal{E}) \models ETZCSC$, and in this case $\mathscr{E} \simeq \mathsf{Disc}(\mathsf{Cat}(\mathscr{E}))$.
- 2 Let K be a 2-category. Then $K \models$ ET2CSC if and *only if Disc* $(X) \models ETCS$, and in this case $\mathcal{K} \simeq$ **Cat**(**Disc** (\mathcal{K})).
- ³ *This extends to a biequivalence*

$$
\text{ETCS} \xrightarrow{\text{Disc}(-)} \text{ET2CSC}
$$

Outline

Elementary 2 toposes

For the 1-category $\&$:

- **•** finite limits
- **e** cartesian closure
- subobject classifier

is an elementary 1-topos!

Elementary 2 toposes

For the 1-category $\&$:

- **•** finite limits
- **•** cartesian closure
- **o** subobject classifier

is an elementary 1-topos!

For the 2-category $Cat(\mathcal{E})$

- **o** finite 2-limits
- **e** cartesian closure
- **•** full subobject classifier

... is not an elementary 2-topos in the sense of [\[Web07\]](#page-89-1).

A discrete opfibration in **Cat** is

A discrete opfibration in **Cat** is

A discrete opfibration in **Cat** is

In a 2-category K , we define discrete opfibrations representably.

Recall the Grothendieck construction:

 $el_{\mathscr{A}} : \mathbf{CAT}(\mathscr{A}, \mathbf{Set}) \to \mathbf{DopFib}/\mathscr{A}.$

Definition ([\[Web07\]](#page-89-0))

A *discrete opfibration classifier* for K consists of a discrete opfibration $p : S_* \to S$ such that for any $X \in \mathcal{K}$, the functor $el_X : \mathcal{K}(X, S) \to \text{Dopfib}/X$ which sends $f \in \mathcal{K}(X, S)$ to the pullback of *p* along *f* is fully faithful.

Definition ([\[Web07\]](#page-89-0))

An *elementary* 2-topos is a 2-category K such that

- **•** It has finite 2-limits.
- **It is cartesian closed.**
- It has a duality involution.
- It has a discrete opfibration classifier.

Definition ([\[Web07\]](#page-89-0))

An *elementary* 2-topos is a 2-category K such that

- **•** It has finite 2-limits.
- **It is cartesian closed.**
- It has a duality involution.
- It has a discrete opfibration classifier.

So **Cat** is not a 2-topos, but rather **CAT** is.

In **SET** :

2D replacement

In **CAT** :

Shulman: if K has a discrete opfibration classifier $p: S_* \to S$.

This is a 2-categorical axiom of replacement!

Definition

Let $\mathcal X$ be a 2-category with a discrete opfibration classifier $p: S_* \to S$, and let $\mathcal{K}_\sigma \hookrightarrow \mathcal{K}$ denote the full-sub-2-category of small objects. Then $(\mathcal{K}, p : S_* \to S)$ is said to be a 2*-category of categories* if the following conditions hold.

$$
\bullet \ \mathscr{K}_{\sigma}, \mathscr{K} \models \mathsf{ET2CSC} \ .
$$

- $2 \mathcal{K}_{\sigma} \hookrightarrow \mathcal{K}$ is a morphism of models of ET2CSC.
- ³ Small discrete opfibrations are closed under composition.

Example

(CAT, $p : Set_* \to Set$) is a 2-category of categories. **Cat** ↔ **CAT**

Let μ be an inaccessible cardinal and $\lambda > \mu$ be a strong limit cardinal.

Write $\text{Set} := \text{Set}_{\mu}$, $\text{Cat} := \text{Cat}(\text{Set})$ and **CAT** := $\text{Cat}(\text{Set}_{\lambda})$. Then:

(CAT, $p : Set_* \to Set$) is a 2-category of categories.

 $Cat \hookrightarrow \text{CAT}$

2CoC satisfy Shulman's 2D AST.

- 2CoC satisfy Shulman's 2D AST.
- Free cocompletions in 2CoC.
- 2CoC satisfy Shulman's 2D AST.
- Free cocompletions in 2CoC.
- A more genuinely 2D NNO.
- 2CoC satisfy Shulman's 2D AST.
- Free cocompletions in 2CoC.
- A more genuinely 2D NNO.
- Coequalisers in ET2CSC.

ArXiv link

[The Elementary Theory of the 2-Category of Small](https://arxiv.org/abs/2403.03647) [Categories,](https://arxiv.org/abs/2403.03647) written with Adrian Miranda, 2024. To appear in TAC: special volume for Bill Lawvere.

https://arxiv.org/abs/2403.03647

References I

Andrée Bastiani and Charles Ehresmann. Catégories de foncteurs structurés. *Cahiers de topologie et géométrie différentielle,* 11(3):329–384, 1969.

D John Bourke.

Codescent objects in 2-dimensional universal algebra.

PhD thesis, University of Sydney, 2010.

■ Adrian Miranda.

Internal categories.

Master's thesis, Macquarie University, 2018. Available at [https://figshare.mq.edu.au/articles/](https://figshare.mq.edu.au/articles/thesis/Internal_categories/19434626/1) [thesis/Internal_categories/19434626/1](https://figshare.mq.edu.au/articles/thesis/Internal_categories/19434626/1).

Ross Street. 譶

Two-dimensional sheaf theory.

Journal of Pure and Applied Algebra, 23(3):251–270, 1982.

Mark Weber.

Yoneda structures from 2-toposes.

Applied Categorical Structures, 15:259–323, 2007.