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Internal Categories

Definition
A small category is:

... C1 ˆC0 C1 C1 C0
m

p1

p2

d1

d0

i

Where C0,C1 P Set. These are the objects of a
2-category Cat.



Internal Categories

Definition
Let E be a category with pullbacks.
A category internal to E is:

... C1 ˆC0 C1 C1 C0
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p1
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Where C0,C1 P E.
These are the objects of a 2-category CatpEq.

GOAL: We wish to find conditions on E which ensure that
CatpEq has finite 2-colimits.
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Internal Categories

Theorem

Let E be locally finitely presentable. Then CatpEq has
2-colimits.

Proof: Using limit sketches and [AR94].



2-colimits

Recall the following result:

Theorem ([Kel82])
A 2-category K has (finite) 2-colimits if and only if it has
(finite) coproducts, copowers by the free living arrow in
Cat (which we denote 2) and coequalisers.

Kp2 d A,Bq – Catp2,KpA,Bqq.
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Coproducts

Coproducts in Cat: easy!

p C ` Dq0 :“ C0 ` D0

p C ` Dq1 :“ C1 ` D1

p C ` Dq1 ˆp C`Dq0 p C ` Dq1 – p C1 ˆ C0 C1q ` pD1 ˆD0 D1q

For E an extensive category, the coproduct in CatpEq is
calculated in exactly the same way.
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Copowers by 2

Kp2 d A,Bq – Catp2,KpA,Bqq.

Copowers by 2 in Cat: given by the cartesian product.

For a lextensive category E, copowers by 2 are given by
cartesian product with the internal category 2E :

... 1 ` 1 ` 1 ` 1 1 ` 1 ` 1 1 ` 1m

p1
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d1

d0
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Coequalisers: Naive attempt

Coequalisers in Cat: much more subtle...

‚ ‚ Ñ ‚ ‚

source

target

coequalise

This tells us three things:
Coequalisers are not calculated levelwise in Cat.
CatpFinSet does not have coequalisers.
Coequalisers in Cat utilise free categories on graphs.



Coequalisers: Naive attempt

Coequalisers in Cat: much more subtle...

‚ ‚ Ñ ‚ ‚

source

target

coequalise

This tells us three things:
Coequalisers are not calculated levelwise in Cat.
CatpFinSet does not have coequalisers.
Coequalisers in Cat utilise free categories on graphs.



Coequalisers in Cat

A method for calculating coequalisers in Cat is described
by Bednarczyk, Borzyszkowski, and Pawlowski in
[BBP99].
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Recipe for calculating coequalisers in CatpEq

Consider the following diagram in CatpEq:

A B
F

G



Recipe for calculating coequalisers in CatpEq

STEP 1: Calculate the coequaliser of

discpA0q A B D
F

G

K

STEP 2: form the coequaliser P : D Ñ C of the parallel
pair of internal functors KF and KG.

A D C.
K ¨F

K ¨G

P
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Parallel functors that agree on objects

Consider A B
F

G

such that F0 “ G0.

Naive attempt: coequalise A1 B1

F1

G1



Counterexample to naive attempt

‚ ‚

‚

‚ ‚

‚

‚ ‚

g

h¨gh¨f

f k

h¨gh¨f

f

h hg



Parallel functors that agree on objects

L

B1 A1 B1

B0 B0

d0

F0d1 F0d0

d1



Parallel functors that agree on objects

This induces a diagram in E

L B3 B1 C1

1ˆF1ˆ1

1ˆG1ˆ1

m2 Q1

Lemma
Let E be a category with pullbacks and pullback stable
coequalisers. Then pB0,C1q can be given the structure of
an internal category.
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Lemma
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an internal category.



Parallel functors that agree on objects

identity assigner:

B0 B1 C1
i Q1



Parallel functors that agree on objects

Sources and target:

L B3 B1 C1

B0 B0

1ˆF1ˆ1

1ˆG1ˆ1

m2

di

Q1

:“di



Parallel functors that agree on objects

Composition: assuming coequalisers are stable under
pullback in E

L ˆB0 L B1 ˆB0 B1 C1 ˆC0 C1

B1 C1

m2¨rFˆB0
m2¨rF

m2¨rGˆm2¨rG
m

Q1ˆQ0
Q1

m

Q1



Parallel functors that agree on objects

Proposition
Let E be a category with pullbacks and pullback stable
coequalisers. Then CatpEq has coequalisers of parallel
pairs of functors that agree on objects.



Coequifiers

Corollary

Let E be a lextensive category with pullbacks and pullback
stable coequalisers. The 2-category CatpEq has
coequifiers.

A B

F

G

α β 2E ˆ A B
α̂

β̂
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Coequalisers out of a discrete category

Consider discpAq B
F

G

such that A P E.

Naive attempt: coequalise A B0

F0

G0



Counterexample to naive attempt

‚ ‚ Ñ ‚ ‚

source

target

coequalise



Coequalisers out of a discrete category

Consider discpAq B
F

G

such that A P E.

coequalise A B0 C0.
F0

G0

k

This gives us an internal graph G :“ B1 C0

kd0

kd1

Assuming that we have free internal categories on
internal graphs in E: take the free category Fp Gq.
We get an arrow UpBq Ñ UFp Gq.
We force this to be an internal functors with
coequifiers, to get an internal functor B Ñ C.
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Coequalisers out of a discrete category

Proposition
Let E be an extensive category with pullbacks and
pullback stable coequalisers in which the forgetful functor
U : CatpEq1 Ñ GphpEq has a left adjoint. Then CatpEq has
coequalisers of parallel pairs of functors out of a discrete
category.
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Theorem

Theorem
Let E be an extensive category with pullbacks and
pullback stable coequalisers in which the forgetful functor
U : CatpEq1 Ñ GphpEq has a left adjoint. Then the
2-category CatpEq has finite 2-colimits.



Examples

Extensive categories with pullbacks and pullback stable
coequalisers in which the forgetful functor
U : CatpEq1 Ñ GphpEq has a left adjoint:

List-arithmetic pretoposes with pullback stable
coequalisers [Mai10].

Arithmetic Π-pretoposes.
Elementary toposes with NNO.

Non-examples: E “ Cat, CatpEq, ...
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Pullback stable coequalisers in Cat?
Coequalisers are not stable under pullback in Cat:
Consider the pushout:

p1q p1 Ñ 2q

p0 Ñ 1q p0 Ñ 1 Ñ 2q

x

Pull this back along p0 Ñ 2q Ñ p0 Ñ 1 Ñ 2q:

H p2q

p0q p0 Ñ 2q



Pullback stable coequalisers in Cat?
Coequalisers are not stable under pullback in Cat:
Consider the pushout:

p1q p1 Ñ 2q

p0 Ñ 1q p0 Ñ 1 Ñ 2q

x

Pull this back along p0 Ñ 2q Ñ p0 Ñ 1 Ñ 2q:

H p2q

p0q p0 Ñ 2q



Pullback stable coequalisers in Cat?
Coequalisers are not stable under pullback in Cat:
Consider the pushout:

p1q p1 Ñ 2q

p0 Ñ 1q p0 Ñ 1 Ñ 2q

x

Pull this back along p0 Ñ 2q Ñ p0 Ñ 1 Ñ 2q:

H p2q

p0q p0 Ñ 2q



Outline

1 Background

2 Coequalisers in CatpEq

Parallel functors that agree on objects
Coequalisers out of a discrete category
putting it together

3 Future work



Further and future work

CatpCatpEqq has finite 2-colimits.

We can phrase this in purely 2-categorical terms (due
to [Bou10]).
We have a converse result for our assumptions.
We can refine this result when E is an arithmetic
Π-pretopos.
possibly: CatpEq has lax-pullback stable
coequalisers?
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ArXiv link

Colimits of internal categories, written with Adrian
Miranda, 2024.

https://arxiv.org/abs/2403.03647

https://arxiv.org/abs/2501.17769
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Are any coequalisers stable under pullback?

Definition
In CatpEq, an internal functor F : X Ñ Y is called a
discrete Conduché fibration if the following is a pullback
square:

X1 ˆX0 X1 Y1 ˆY0 Y1

X1 Y1.

m

F1ˆF0
F1

m

F1



Are any coequalisers stable under pullback?

Proposition
Let E be a category with pullbacks. Then E has pullback
stable coequalisers if and only if coequalisers of parallel
pairs of internal functors which agree on objects are
stable under pullback along discrete Conduché fibrations.

L B3 B1 C1

1ˆF1ˆ1

1ˆG1ˆ1

m2 Q1

Corollary: in DblCat “ CatpCatq, Conduché fibrations are
not all exponentiable (cf. [Nie20]).
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Free internal categories from 2-colimits

Lemma ([Bou10])
Let E be a category with pullbacks, and suppose that
CatpEq has finite 2-colimits. Then the forgetful functor
U : CatpEq1 Ñ GphpEq has left adjoint.

Let G “ pG0,G1, s, tq be an internal graph in E. Consider
the coinserter in CatpEq

discpG1q discpG0q Fp Gq.

discpsq

discptq

Q



Converse result

Theorem

Let E be a category with pullbacks. Then E is extensive,
has pullback stable coequalisers, and the forgetful functor
U : CatpEq1 Ñ GphpEq has a left adjoint if and only if the
2-category CatpEq is extensive, has 2-colimits and has
pullbacks and coequalisers of parallel pairs of functors
that agree on objects are stable under pullback along
discrete Conduché fibrations.
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