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What should the internal language of a “(2, 1)-pretopos”
be?

@ Proof relevant (i.e. MLTT)

@ Genuinely 2-dimensional

@ non-trivial Id-types
@  non-trivial homotopy theory

@ Existential quantification (i.e. X-types)
@ Universal quantification (i.e. I1-types)

An example of some kind of (small) (2, 1)-pretopos should
be satisfied by Gpd
... and Gpd(&) for suitable &
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Internal categories

Let & be a category with pullbacks.

Definition
A category internal to € is:
P d
C1 X Co C1 m > C1 < ! Co
P2 ’ d ’

These are the objects of a 2-category Cat(€).

We denote the (2, 1)-category of internal groupoids by
Gpd(&).
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Note that for C € Cat(&), the 2-colimit of

P N di N
m i

C1 X Cy C1 > C1 < Co
P2’ d

is C.
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Cateads

Definition (Bourne-Penon, Bourke)
For a 2-category &, a catead is

2N dy
m i

C1 X Co C1 > C1 < Co
P2 d

such that (d,, dy) forms a 2-sided discrete fibration.
We call its 2-colimit a codescent object.

So for A = Cat(&), every object is a codescent object of a
discrete catead.
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Bourke’s exactness axioms

Let & be a 2-category.

Bourke’s axioms:
@ % has pullbacks and powers by 2.

©@ .« has codescent objects of cateads and they are
effective.

@ Codescent morphisms are effective in A .
© Discrete objects in A are projective.
@ .« has enough projectives.
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Bourke’s exactness axioms

Let A be a 2-category.

Bourke’s axioms: |
@ .« has pullbacks and powers by 2.

@ .« has codescent objects of cateads and they are
effective.

© Codescent morphisms are effective in «..
© Discrete objects in A are projective.
@ A has enough projectives.

Theorem (Carboni-Vitale) |

An exact 1-category is an exact completion if and only if it
has enough projectives. In this case, it is the exact
completion of its projective objects.
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Bourke’s characterisation of Cat(&)

Theorem (Bourke)
& has pullbacks = Cat(&) satisfies Bourke’s axioms.

Conversely, if X satisfies Bourke’s axioms
— K ~ Cat (&) where & := Disc(X).
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Bourke’s characterisation of Cat(&)

Theorem (Bourke)
& has pullbacks = Cat(&) satisfies Bourke’s axioms.

Conversely, if X satisfies Bourke’s axioms
— K ~ Cat (&) where & := Disc(X).

Theorem (Bourke-Garner)
& — Cat(€) is a kind of 2-exact completion.
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Refining this

Theorem (H.)

Let & be a locally cartesian closed, lextensive category
with coequalisers and a NNO
— Cat(&) satisfies (1) — (4).

Conversely ¥ satisfies (1) — (4) — KX ~Cat (&) for€ a
locally cartesian closed lextensive category with
coequalisers and NNO.

@ Bourke’s axioms.

Q@ 2-lextensivity.

© Discrete opfibrations are exponentiable.
© Finite 2-colimits.
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Refining this

Theorem (H.) |

Let & be a locally cartesian closed, lextensive category
with coequalisers and a NNO
— Cat(&) satisfies (1) — (4).

Conversely ¥ satisfies (1) — (4) — KX ~Cat (&) for€ a
locally cartesian closed lextensive category with
coequalisers and NNO.

@ Bourke’s axioms.

@ 2-lextensivity.

© Discrete opfibrations are exponentiable.

© Finite 2-colimits.
K satisfies (1) — (2) ~ a “small Fgo-pretopos”.
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Examples

For the rest of this talk, fix # = Cat(&) for & a locally
cartesian closed, lextensive category with coequalisers
and a NNO. Examples of & include:

@ Set

@ Any presheaf category [C°P, Set]. Note that
Cat([C°P, Set|) ~ [C°P, Cat|.

@ Any Grothendieck topos.

@ Any elementary topos with a natural numbers object.

@ Arithmetic lM-pretoposes (c.f. Maietti, Joyal).

@ Palmgren’s CETCS.

@ Categories of assemblies Asm (cf. the effective topos
(Hyland))
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Homotopical structure

Theorem (Everaert-Kieboom-Van der Linden) |
There is a model structure on Cat(€):

@ the weak equivalences are the representable weak
equivalences.

@ the fibrations are the representable isofibrations.

@ the cofibrations are the complemented inclusion on
objects functors.

f: X — Y is a complemented inclusion on objects if
foELXOZXOC—>Xo+C.
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giving endofunctors L, R : C2 — C?
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L,R: C?2 — C2? are moreover (co)pointed!

X — X X e
Lfl lf fl lRf

o e:L—id and 7:id—R.
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¢
—
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Relation to algebraicity

L,R: C? — C2? are moreover (co)pointed!

Lf

X X X —— o

Lfl (f)/ﬂ lf fl lRf

Y vy —
s e:L—-id and n:id—R.

An (R, n)-algebra structure for f is given by a square

Lemma

There exists a (R, n)-algebra structure on f < feR.
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Algebraic weak factorisation systems

Definition (Grandis and Tholen)

An algebraic weak factorisation system on a category C is
a pair (L, R) of a comonad and a monad on C? such that
(L-Coalg, R-Alg) is a wfs. J
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Algebraic model structures

Definition (Riehl)
An algebraic model structure on a homotopical category

(C,"W) is a pair of algebraic weak factorisation systems
(TC,F) and (C, TF) satisfying some conditions.
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Algebraic model structures

Definition (Riehl) |
An algebraic model structure on a homotopical category
(C,W) is a pair of algebraic weak factorisation systems
(TC,F) and (C, TFF) satisfying some conditions.

Example
Any cofibrantly generated model structure!
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Algebraic model structure

Theorem (H.) |

@ There is an algebraic model structure on Cat(§).
@ The (co)monads on this are described explicitly.

@ It has underlying model structure of (Everaert,
Kieboom, Van der Linden).

©Q Itis cartesian monoidal.
@ It is cofibrantly generated.
©Q The algebraic fibrations are the cloven isofibrations.
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@ There is an algebraic model structure on Cat(§).
@ The (co)monads on this are described explicitly.

@ It has underlying model structure of (Everaert,
Kieboom, Van der Linden).

©Q Itis cartesian monoidal.
@ It is cofibrantly generated.
©Q The algebraic fibrations are the cloven isofibrations.

Corollary: we can lift Everaert, Kieboom and Van der
Linden’s model structure to the category of M-modules for
an internal monoidal category M.
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Groupoids

For the rest of this talk, consider A ~ Gpd(&) for & a
locally cartesian closed, lextensive category with
coequalisers and a NNO.
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For the rest of this talk, consider A ~ Gpd(&) for & a
locally cartesian closed, lextensive category with
coequalisers and a NNO.

There is a (2, 1)-version of Bourke’s theorem.

The algebraic model structure on Cat(&) restricts to
Gpd(6).

Such a (2, 1)-category models MLTT.
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Type theoretic awfs

Definition (Gambino-Larrea)

A type-theoretic algebraic weak factorisation system on a
category C is an awfs (TC, F) with some extra structure
and satisfying certain conditions.
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Type theoretic awfs

Definition (Gambino-Larrea) |
A type-theoretic algebraic weak factorisation system on a
category C is an awfs (TC, F) with some extra structure
and satisfying certain conditions.

Theorem (Gambino-Larrea) |
Type theoretic awfs model MLTT with ¥, 1 and Id-types.

The F-algebras model the dependent types.
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Internal groupoidal model of MLTT

Theorem (H.)

The awfs (TC,T) on the category Gpd(&) is equipped
with the structure of a type theoretic awfs.

So cloven isofibrations form a model of MLTT.
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Examples

@ Set

@ Any presheaf category [C°P, Set]. Note that
Gpd([C°, Set]) =~ [C°P, Gpd].

@ Any Grothendieck topos.

@ Any elementary topos with a natural numbers object.

@ Arithmetic MN-pretoposes.

@ Palmgren’s CETCS.

@ Categories of assemblies Asm
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Realisability 2-topos

In joint work with Sam Speight:
@ Asm®/®9 _ gff.

@ There is a modest discrete opfib. classifier in
Cat(Asm) (cf. Weber’s elementary 2-toposes).

@ It is not a Grothendieck 2-topos.
@ Itis a 2-category with a class of small discrete opfibs.

@ Gpd(Asm) models MLTT. In this case the classifier
becomes a univalent universe of small O-types.

Related work by Awodey-Emmenegger and Agwu and
HoTTLean (Hua, Awodey, Carneiro, Hazratpour,
Nawrocki, Woolfson, Xu)
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Together with Fernando Chu:
Cat(&) models directed type theory.
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Summary

@ For A a 2-category satisfying some axioms, % is of
the form A ~ Cat(&) for richly structured €.

@ |t therefore has an algebraic homotopy theory.

@ Its (2,1)-core models higher dimensional logic i.e
MLTT.

@ Such a thing should be an example of a small
(2,1)-pretopos.

Arxiv: The algebraic internal groupoid model of Martin-Lof
type theory, 2025.
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