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Motivation

What should the internal language of a “p2,1q-pretopos”
be?

Proof relevant (i.e. MLTT)
Genuinely 2-dimensional

non-trivial Id-types
ù non-trivial homotopy theory

Existential quantification (i.e. Σ-types)
Universal quantification (i.e. Π-types)

An example of some kind of (small) p2,1q-pretopos should
be satisfied by Gpd
... and GpdpEq for suitable E
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Outline

1 2-categorical axioms

2 Algebraic homotopy theory

3 Type theory

4 Future work
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Internal categories

Let E be a category with pullbacks.

Definition
A category internal to E is:

C1 ˆC0 C1 C1 C0
m

p1

p2

d1

d0

i

These are the objects of a 2-category CatpEq.

We denote the p2,1q-category of internal groupoids by
GpdpEq.
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Cateads

Note that for C P CatpEq, the 2-colimit of

C1 ˆC0 C1 C1 C0
m

p1

p2

d1

d0

i

is C.
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Cateads

Definition (Bourne-Penon, Bourke)
For a 2-category K, a catead is

C1 ˆC0 C1 C1 C0
m

p1

p2

d1

d0

i

such that pd1,d0q forms a 2-sided discrete fibration.
We call its 2-colimit a codescent object.

So for K “ CatpEq, every object is a codescent object of a
discrete catead.
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Bourke’s exactness axioms

Let K be a 2-category.

Bourke’s axioms:
1 K has pullbacks and powers by 2.
2 K has codescent objects of cateads and they are

effective.
3 Codescent morphisms are effective in K.
4 Discrete objects in K are projective.
5 K has enough projectives.
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Y P K is discrete if

X Y

f

g

ϕ ùñ f “ g and ϕ “ 1f
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Bourke’s exactness axioms

Let K be a 2-category.

Bourke’s axioms:
1 K has pullbacks and powers by 2.
2 K has codescent objects of cateads and they are

effective.
3 Codescent morphisms are effective in K.
4 Discrete objects in K are projective.
5 K has enough projectives.

Theorem (Carboni-Vitale)
An exact 1-category is an exact completion if and only if it
has enough projectives. In this case, it is the exact
completion of its projective objects.
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Bourke’s characterisation of CatpEq

Theorem (Bourke)
E has pullbacks ùñ CatpEq satisfies Bourke’s axioms.

Conversely, if K satisfies Bourke’s axioms
ùñ K » Cat pEq where E :“ DiscpKq.

Theorem (Bourke-Garner)
E ÞÑ CatpEq is a kind of 2-exact completion.
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Refining this

Theorem (H.)
Let E be a locally cartesian closed, lextensive category
with coequalisers and a NNO
ùñ CatpEq satisfies p1q ´ p4q.

Conversely K satisfies p1q ´ p4q ùñ K » Cat pEq for E a
locally cartesian closed lextensive category with
coequalisers and NNO.

1 Bourke’s axioms.
2 2-lextensivity.
3 Discrete opfibrations are exponentiable.
4 Finite 2-colimits.

K satisfies p1q ´ p2q ù a “small FBO-pretopos”.
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Examples

For the rest of this talk, fix K “ CatpEq for E a locally
cartesian closed, lextensive category with coequalisers
and a NNO. Examples of E include:

Set

Any presheaf category rCop,Sets. Note that
CatprCop,Setsq – rCop,Cats.
Any Grothendieck topos.
Any elementary topos with a natural numbers object.
Arithmetic Π-pretoposes (c.f. Maietti, Joyal).
Palmgren’s CETCS.
Categories of assemblies Asm (cf. the effective topos
(Hyland))
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Homotopical structure

Theorem (Everaert-Kieboom-Van der Linden)
There is a model structure on CatpEq:

the weak equivalences are the representable weak
equivalences.
the fibrations are the representable isofibrations.
the cofibrations are the complemented inclusion on
objects functors.

f : X Ñ Y is a complemented inclusion on objects if
f0 – ιX0 : X0 ãÑ X0 ` C.
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Outline

1 2-categorical axioms

2 Algebraic homotopy theory

3 Type theory

4 Future work
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Functorial wfs

X Y

Ef

f

LQ PR

A X

B Y

LQ PR
D

A X

Ef Eg

B Y

f

Lf

u

g

Lg

Epu,vq

Rf Rg

v

giving endofunctors L,R : C2 Ñ C2
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Relation to algebraicity

L,R : C2 Ñ C2 are moreover (co)pointed!

X X

‚ Y

Lf f

Rf

X ‚

Y Y

f

Lf

Rf

ù ϵ : L Ñ id and η : id Ñ R.

An pR, ηq-algebra structure for f is given by a square
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‚ Y
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Rf

ϕ

X ‚

Y Y

f

Lf

Rf

ù ϵ : L Ñ id and η : id Ñ R.
An pR, ηq-algebra structure for f is given by a square

Lemma
There exists a pR, ηq-algebra structure on f ðñ f P R.
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Algebraic weak factorisation systems

Definition (Grandis and Tholen)
An algebraic weak factorisation system on a category C is
a pair pL,Rq of a comonad and a monad on C2 such that
pL-Coalg,R-Algq is a wfs.
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Algebraic model structures

Definition (Riehl)
An algebraic model structure on a homotopical category
pC, Wq is a pair of algebraic weak factorisation systems
pTC,Fq and pC,TFq satisfying some conditions.

Example
Any cofibrantly generated model structure!
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Algebraic model structure

Theorem (H.)
1 There is an algebraic model structure on CatpEq.
2 The (co)monads on this are described explicitly.
3 It has underlying model structure of (Everaert,

Kieboom, Van der Linden).
4 It is cartesian monoidal.
5 It is cofibrantly generated.
6 The algebraic fibrations are the cloven isofibrations.

Corollary: we can lift Everaert, Kieboom and Van der
Linden’s model structure to the category of M-modules for
an internal monoidal category M.
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Groupoids

For the rest of this talk, consider K » GpdpEq for E a
locally cartesian closed, lextensive category with
coequalisers and a NNO.

There is a p2,1q-version of Bourke’s theorem.
The algebraic model structure on CatpEq restricts to
GpdpEq.
Such a p2,1q-category models MLTT.
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Type theoretic awfs

Definition (Gambino-Larrea)
A type-theoretic algebraic weak factorisation system on a
category C is an awfs pTC,Fq with some extra structure
and satisfying certain conditions.

Theorem (Gambino-Larrea)
Type theoretic awfs model MLTT with Σ, Π and Id-types.

The F-algebras model the dependent types.
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Internal groupoidal model of MLTT

Theorem (H.)
The awfs pTC,Fq on the category GpdpEq is equipped
with the structure of a type theoretic awfs.

So cloven isofibrations form a model of MLTT.

21 / 29



Examples

Set
Any presheaf category rCop,Sets. Note that
GpdprCop,Setsq – rCop,Gpds.

Any Grothendieck topos.
Any elementary topos with a natural numbers object.
Arithmetic Π-pretoposes.
Palmgren’s CETCS.
Categories of assemblies Asm
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Realisability 2-topos

In joint work with Sam Speight:
Asmex/reg

“ Eff.
There is a modest discrete opfib. classifier in
CatpAsmq (cf. Weber’s elementary 2-toposes).
It is not a Grothendieck 2-topos.
It is a 2-category with a class of small discrete opfibs.
GpdpAsmq models MLTT. In this case the classifier
becomes a univalent universe of small 0-types.

Related work by Awodey-Emmenegger and Agwu and
HoTTLean (Hua, Awodey, Carneiro, Hazratpour,
Nawrocki, Woolfson, Xu)
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Directed type theory

Together with Fernando Chu:
CatpEq models directed type theory.
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Summary

For K a 2-category satisfying some axioms, K is of
the form K » CatpEq for richly structured E.
It therefore has an algebraic homotopy theory.
Its p2,1q-core models higher dimensional logic i.e
MLTT.
Such a thing should be an example of a small
p2,1q-pretopos.

Arxiv: The algebraic internal groupoid model of Martin-Löf
type theory, 2025.
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