Homotopy Theory and Logic

Calum Hughes

BMC 2024

The University of Manchester

Homotopical Trinitarianism

Martin-Löf dependent type theory (MLTT):

- basis for proof assistants e.g. Lean, Coq, Agda,...
- Dependent Types: a : A ⊢ B(a). This gives Π-, Σand Id- types.
- Identity Types: $p, q : P \vdash Id_p(p, q)$.
- Iterated identity types:

 $x, y : \mathrm{Id}_{p}(p, q) \vdash \mathrm{Id}_{\mathrm{Id}_{p}(p,q)}(x, y)...$

Identity Types

- $a: A \rightsquigarrow \operatorname{refl}_a : \operatorname{Id}_A(a, a).$
- $x : Id_A(a, b) \dashrightarrow sym(x) : Id_A(b, a).$
- $x : \operatorname{Id}_{A}(a, b) \text{ and } y : \operatorname{Id}_{A}(b, c)$ $\longrightarrow \operatorname{trans}(x, y) : \operatorname{Id}_{A}(a, c).$
- $trans(x, sym(x)) = trans(sym(x), x) = refl_a$.

An isofibration in Gpd is

An isofibration in Gpd is

This is due first to Hofmann and Streicher [HS98]:

- Types are modelled by isofibrations.
- P → 1 is an isofibration, so all groupoids can be thought of as (non-dependent) types.
- There is no higher structure...

Kan Fibrations

Kan Fibrations

Kan Fibrations

This was due first to Voevodksy [KL12]:

- Types are modelled by Kan Fibrations.
- $\mathbb{P} \to \mathbf{1}$ is a Kan fibration if and only if \mathbb{P} is an ∞ -groupoid.
- There is higher structure.
- Univalence holds: $(A = B) \simeq (A \simeq B)$.

There is a link between models of MLTT and abstract homotopy theory.

Definition ([Qui67])

Let **M** be a category. A *Quillen model structure* on **M** consists of classes of maps $\mathcal{W}, \mathcal{C}, \mathcal{F}$ satisfying some conditions.

Example

There is a model structure on Gpd :

- $\mathcal{W} = \{ equivalences of categories \}$
- $\mathscr{C} = \{$ injective-on-objects functors $\}$
- $\mathcal{F} = \{\text{isofibrations}\}$

Example

There is a model structure on **sSet** :

- $\mathcal{W} = \{\text{homotopy equivalences}\}$
- $\mathscr{C} = \{\text{monomorphisms}\}$
- $\mathscr{F} = \{ Kan fibrations \}$

Example ([GHSS22])

- $\mathcal{W} = \{\text{homotopy equivalences}\}$
- $\mathscr{C} = \{ \text{Reedy complemented inclusions} \}$
- $\mathscr{F} = \{ effective Kan fibrations \}$

This is called the *effective model structure* on se.

A model structure on internal groupoids

Theorem (H.)

For a suitable category \mathscr{E} , there is a model structure on $\mathbf{Gpd}(\mathscr{E})$:

- $\mathcal{W} = \{equivalences of categories\}$
- $\mathscr{C} = \{ complemented inclusion-on-objects functors \}$

•
$$\mathcal{F} = \{$$
internal isofibrations $\}$

A model structure on internal groupoids

Theorem (H.)

For a suitable category \mathscr{E} , there is a model structure on $\mathbf{Gpd}(\mathscr{E})$:

- $\mathcal{W} = \{ equivalences of categories \}$
- $\mathscr{C} = \{ complemented inclusion-on-objects functors \}$

•
$$\mathscr{F} = \{$$
internal isofibrations $\}$

Examples of &:

- Set
- Cat
- $\textbf{Psh}(\mathbb{C})$
- Any Grothendieck topos.
- The effective topos.

An internal groupoidal model of MLTT

Theorem (H.)

Let & be a category satisfying some conditions. The right adjoint splitting of the comprehension category associated to the

(TrivCof,Fib)

algebraic weak factorisation system on **Gpd**(\mathscr{E}) is equipped with strictly stable choices of Σ , Π and Id-types.

i.e. internal isofibrations in $\textbf{Gpd}(\mathcal{E})$ form a model of MLTT.

An internal groupoidal model of MLTT

Theorem (H.)

Let [®] be a category satisfying some conditions. The right adjoint splitting of the comprehension category associated to the

(TrivCof,Fib)

algebraic weak factorisation system on **Gpd**(\mathscr{E}) is equipped with strictly stable choices of Σ , Π and Id-types.

i.e. internal isofibrations in $\textbf{Gpd}(\mathscr{E})$ form a model of MLTT. Examples for \mathscr{E} :

- Set
- $\bullet \ \textbf{Psh}(\mathbb{C})$
- Any Grothendieck topos.
- The effective topos.

Conjecture

Let ${\mathscr E}$ be a category satisfying some conditions. Then the the fibrations of the effective model structure on ${\bm s}{\mathscr E}$ give a model of HoTT.

References I

Nicola Gambino, Simon Henry, Christian Sattler, and Karol Szumiło. The effective model structure and ∞ -groupoid objects. Forum of Mathematics, Sigma, 10:e34, 2022.

- Martin Hofmann and Thomas Streicher.
 The groupoid interpretation of type theory.
 Twenty-five years of constructive type theory (Venice, 1995), 36:83–111, 1998.
- Chris Kapulkin and Peter LeFanu Lumsdaine. The simplicial model of univalent foundations (after voevodsky). arXiv preprint arXiv:1211.2851, 2012.

D. G. Quillen.

Homotopical Algebra. Lecture notes in mathematics. Springer-Verlag, 1967.