Categorified Choice Principles

Calum Hughes

BLC 12th September 2025

Outline

- Background
- Categorifying
- 3 Type Theory (WIP)

Outline

- Background
- Categorifying
- 3 Type Theory (WIP)

Axiom of choice

Every surjection $f: X \rightarrow Y$ has a splitting.

i.e. there exists $g: Y \rightarrow X$ such that

External axiom of choice in & (AC)

Every epimorphism $f: X \rightarrow Y$ in \mathscr{E} has a splitting.

i.e. there exists $g: Y \rightarrow X$ such that

External axiom of choice in & (AC)

Every epimorphism $f: X \rightarrow Y$ in \mathscr{E} has a splitting.

Example

- Assuming the axiom of choice, Set satisfies (AC).
- FinSet satisfies (AC).
- Top does not satisfy (AC).

The elementary theory of the category of sets

Definition (Lawvere)

A category $\mathscr E$ is said to satisfy the *elementary theory of* the category of sets (ETCS) if

- It is an elementary topos.
- It has a natural numbers object.
- It is well-pointed.
- It satisfies (AC).

The elementary theory of the category of sets

Definition (Lawvere)

A category & is said to satisfy the *elementary theory of the category of sets* (ETCS) if

- It is an elementary topos.
- It has a natural numbers object.
- It is well-pointed.
- It satisfies (AC).

Osius which the internal language of any category satisfying ETCS models ZFC without the axiom of replacement.

The elementary theory of the category of sets

Definition (Lawvere)

A category & is said to satisfy the *elementary theory of the category of sets* (ETCS) if

- It is an elementary topos.
- It has a natural numbers object.
- It is well-pointed.
- It satisfies (AC).

Osius which the internal language of any category satisfying ETCS models ZFC without the axiom of replacement.

Morally, ETCS characterises the category of ZFC sets.

Definition

 $P \in \mathcal{E}$ is called a *choice object* if any epimorphism $A \rightarrow P$ has a splitting.

Definition

 $P \in \mathcal{E}$ is called a *choice object* if any epimorphism $A \rightarrow P$ has a splitting.

Axiom of choice II (AC)

Every $P \in \mathcal{E}$ is a choice object.

Definition

 $P \in \mathcal{E}$ is called a *choice object* if any epimorphism $A \rightarrow P$ has a splitting.

Axiom of choice II (AC)

Every $P \in \mathcal{E}$ is a choice object.

Presentation axiom (P)

For all $X \in \mathcal{E}$ there exists a choice object $P \in \mathcal{E}$ and an epimorphism $P \twoheadrightarrow X$.

Alternatively, we say & has enough choice objects.

Definition

 $P \in \mathcal{E}$ is called a *choice object* if any epimorphism $A \rightarrow P$ has a splitting.

Axiom of choice II (AC)

Every $P \in \mathcal{E}$ is a choice object.

Presentation axiom (P)

For all $X \in \mathcal{E}$ there exists a choice object $P \in \mathcal{E}$ and an epimorphism $P \twoheadrightarrow X$.

Alternatively, we say & has enough choice objects.

Clearly, $(AC) \implies (P)$ but not in general the converse.

The constructive elementary theory of the category of sets

Definition (Palmgren)

A category $\mathscr E$ is said to satisfy the constructive elementary theory of the category of sets (CETCS) if

- It is a pretopos.
- It has a natural numbers object.
- ...
- It satisfies (P).

The constructive elementary theory of the category of sets

Definition (Palmgren)

A category $\mathscr E$ is said to satisfy the constructive elementary theory of the category of sets (CETCS) if

- It is a pretopos.
- It has a natural numbers object.
- ...
- It satisfies (P).

Morally, CETCS characterises the category of CZF sets/ setoids (cf. Aczel).

Outline

- Background
- Categorifying
- 3 Type Theory (WIP)

Desires for categorical foundations

Lawvere advocated for using a first order axiomatisation of the category of categories as a foundation for mathematics.

Desires for categorical foundations

Lawvere advocated for using a first order axiomatisation of the category of categories as a foundation for mathematics.

It is natural to instead ask for a first order axiomatisation of the 2-category of categories as a foundation for mathematics.

Desires for categorical foundations

Lawvere advocated for using a first order axiomatisation of the category of categories as a foundation for mathematics.

It is natural to instead ask for a first order axiomatisation of the 2-category of categories as a foundation for mathematics.

	1D	2D
Object	& a 1-category (e.g. topos)	${\mathcal K}$ a 2-category
internal logic	set theory (ZFC, CZF,)	category theory
Key example	Set	Cat

Internal categories

Let & be a category with pullbacks.

Definition

A category internal to $\mathscr E$ is

$$\mathsf{Mor}(C) \times_{\mathsf{ob}(C)} \mathsf{Mor}(C) \xrightarrow{\mathsf{comp}} \mathsf{Mor}(C) \xrightarrow{\overset{\mathsf{source}}{\longleftarrow}} \mathsf{Ob}(C)$$

These are the objects of a 2-category $Cat(\mathcal{E})$.

Note: when $\mathscr{E} = \mathbf{Set}$, $\mathbf{Cat}(\mathscr{E}) = \mathbf{Cat}$.

Internal categories

Let & be a category with pullbacks.

Definition

A category internal to & is

$$\mathsf{Mor}(C) \times_{\mathsf{ob}(C)} \mathsf{Mor}(C) \xrightarrow{\mathsf{comp}} \mathsf{Mor}(C) \xrightarrow{\overset{\mathsf{source}}{\longleftarrow}} \mathsf{Ob}(C)$$

These are the objects of a 2-category $Cat(\mathcal{E})$.

Note: when $\mathscr{E} = \mathbf{Set}$, $\mathbf{Cat}(\mathscr{E}) = \mathbf{Cat}$. Idea: to check "correctness" of our 2D definitions \leadsto \mathscr{E} satisfies the 1D property iff $\mathbf{Cat}(\mathscr{E})$ satisfies 2D property.

Axiom of choice in Cat

Axiom of choice

Every surjection $f: X \rightarrow Y$ has a splitting.

is equivalent to the following axiom:

Axiom of choice III

Every essentially surjective on objects and fully faithful functor is an equivalence of categories.

Axiom of choice in Cat

Axiom of choice

Every surjection $f: X \rightarrow Y$ has a splitting.

is equivalent to the following axiom:

Axiom of choice III

Every surjective on objects and fully faithful functor is a split equivalence of categories.

i.e. given $F:\mathbb{C}\to\mathbb{D}$ that is surjective on objects and fully faithful there exists $G:\mathbb{D}\to\mathbb{C}$ such that $FG=\mathrm{id}_\mathbb{D}$ and there exists $\alpha:GF\cong\mathrm{id}_\mathbb{C}$.

Axiom of choice for internal categories

External axiom of choice in & (AC)

Every epimorphism $f: X \rightarrow Y$ in \mathscr{E} has a splitting.

is equivalent to the following axiom:

External axiom of choice for Cat(&) (2AC)

Every epimorphic on objects and fully faithful internal functor is a split internal equivalence of internal categories.

i.e. given $F:\mathbb{C}\to\mathbb{D}$ that is epimorphic on objects and fully faithful there exists $G:\mathbb{D}\to\mathbb{C}$ such that $FG=\mathrm{id}_\mathbb{D}$ and there exists $\alpha:GF\cong\mathrm{id}_\mathbb{C}$.

The categorified axiom of choice

Problem: (2AC) cannot be phrased in an arbitrary 2-category.

The categorified axiom of choice

Problem: (2AC) cannot be phrased in an arbitrary 2-category.

Solution: epimorphic on objects functors are precisely the acute morphisms in $Cat(\mathcal{E})$ (Street).

The categorified axiom of choice

Problem: (2AC) cannot be phrased in an arbitrary 2-category.

Solution: epimorphic on objects functors are precisely the acute morphisms in $Cat(\mathcal{E})$ (Street).

External axiom of choice for \mathcal{K} (2AC II)

Every acute and fully faithful 1-cell is a split equivalence.

i.e. given $F: X \to Y$ that is acute and fully faithful there exists $G: Y \to X$ such that $FG = id_Y$ and there exists a 2-cell $\alpha: GF \cong id_X$.

Definition (H. and Miranda)

A 2-category $\mathcal K$ is said to satisfy the *elementary theory of* the 2-category of small categories (ET2CSC) if

- ...
- It satisfies (2AC II).

Definition (H. and Miranda)

A 2-category $\mathcal K$ is said to satisfy the elementary theory of the 2-category of small categories (ET2CSC) if

- ...
- It satisfies (2AC II).

Theorem (H. and Miranda)

There is a biequivalence

ETCS ≈ ET2CSC

Definition (H. and Miranda)

A 2-category $\mathcal K$ is said to satisfy the elementary theory of the 2-category of small categories (ET2CSC) if

- ...
- It satisfies (2AC II).

Theorem (H. and Miranda)

There is a biequivalence

ETCS ≈ ET2CSC

Morally, ET2CSC characterises the 2-categorical properties of the 2-category of small categories in ZFC.

Definition (H. and Miranda)

A 2-category $\mathcal K$ is said to satisfy the *elementary theory of the* 2-category of small categories (ET2CSC) if

- ...
- It satisfies (2AC II).

Theorem (H. and Miranda)

There is a biequivalence

ETCS ≈ ET2CSC

Morally, ET2CSC characterises the 2-categorical properties of the 2-category of small categories in ZFC. What about the 2-category of small categories in CZF?

Definition

 $P \in \mathcal{E}$ is called a *choice object* if any epimorphism $A \rightarrow P$ has a splitting.

Definition (H.)

 $P \in \mathcal{K}$ is called a *choice object* if every acute and fully faithful 1-cell $X \to P$ is a split equivalence.

Definition (H.)

 $P \in \mathcal{H}$ is called a *choice object* if every acute and fully faithful 1-cell $X \to P$ is a split equivalence.

Example

In $Cat(\mathcal{E})$, the choice objects are precisely those $\mathbb{X} \in Cat(\mathcal{E})$ such that Ob(X) is a choice object in \mathcal{E} .

Definition (H.)

 $P \in \mathcal{K}$ is called a *choice object* if every acute and fully faithful 1-cell $X \to P$ is a split equivalence.

Example

In $Cat(\mathcal{E})$, the choice objects are precisely those $\mathbb{X} \in Cat(\mathcal{E})$ such that Ob(X) is a choice object in \mathcal{E} .

Such things have been studied:

- Anthony Agwu's PhD thesis.
- Steve Awodey and Jacapo Emmenegger's coherent groupoids.
- Cofibrant objects of a model structure on Cat(E) (Everaert-Kieboom-Van der Linden).
- They are related to \mathcal{F}_{SO} -exactness (Bourke-Garner).

The categorified presentation axiom

External axiom of choice for \mathcal{K} (2AC II) Every $P \in \mathcal{K}$ is a choice object.

The categorified presentation axiom

External axiom of choice for \mathcal{K} (2AC II)

Every $P \in \mathcal{K}$ is a choice object.

Categorified presentation axiom (2P)

For all $X \in \mathcal{K}$ there exists a choice object $P \in \mathcal{K}$ and an acute and fully faithful morphism $P \twoheadrightarrow X$.

Alternatively, we say ${\mathcal K}$ has enough choice objects.

CET2CSC

Definition (H.)

A 2-category $\mathcal K$ is said to satisfy the constructive elementary theory of the 2-category of small categories (ET2CSC) if

- It is \mathcal{F}_{SO} -exact.
- ...
- It satisfies (2P).

Theorem (H.)

There is a biequivalence

CETCS ≃ **ET2CSC**

Morally, CET2CSC characterises the properties of the 2-category of small categories in CZF/ setoids.

Outline

- Background
- Categorifying
- 3 Type Theory (WIP)

Models of MLTT

Restricting from $Cat(\mathcal{E})$ to $Gpd(\mathcal{E})$...

Theorem (H.)

For nice enough \mathscr{E} (e.g. satisfies ETCS or CETCS), the (2,1)-category $\mathbf{Gpd}(\mathscr{E})$ models Martin-Löf Type Theory (MLTT) with Σ -, Π - and Id -types.

Groupoids model non-dependent types. Trivial fibrations are exactly the epimorphic on objects split equivalences.

Projective types

Observation: split-epi on object and fully faithful functors are exactly the dependent types with contractible fibres.

Definition (WIP)

A type A is a choice type if for all $a : A \vdash B(a)$ type

$$\left(\frac{1}{B_0:B(a)} \prod_{b:B(a)} \operatorname{Id}(b_0,b) \right) \to \left(\sum_{b_0:B(a)} \prod_{b:B(a)} \operatorname{Id}(b_0,b) \right)$$

Modulo the correctness of the above definition, the choice groupoids $\mathbb{X} \in \textbf{Gpd}(\mathcal{E})$ model the choice types.

Type Theoretic choice

Axiom of choice for MLTT (AC_{MLTT})

Every non-dependent type is projective.

Question: how does this compare to the axiom of choice already considered? (e.g. AC_{-1} in the HoTT book).

Type Theoretic choice

Axiom of choice for MLTT (AC_{MLTT})

Every non-dependent type is projective.

Question: how does this compare to the axiom of choice already considered? (e.g. AC_{-1} in the HoTT book).

Presentation axiom for MLTT (P_{MLTT})

Every non-dependent type is covered by a projective type.

Type Theoretic choice

Axiom of choice for MLTT (AC_{MLTT})

Every non-dependent type is projective.

Question: how does this compare to the axiom of choice already considered? (e.g. AC_{-1} in the HoTT book).

Presentation axiom for MLTT (P_{MLTT})

Every non-dependent type is covered by a projective type.

Theorem

- \mathscr{E} satisfies (AC) \Longrightarrow **Gpd**(\mathscr{E}) models MLTT + AC_{MLTT}
- \mathscr{E} satisfies $(P) \Longrightarrow \mathbf{Gpd}(\mathscr{E})$ models $MLTT + P_{MLTT}$

Summary

- Using internal categories, we came up with 2-dimensional abstract versions of the axiom of choice and the presentation axiom.
- These are interesting for 2-categorical foundations of mathematics.
- To do this, we had to come up with a 2-dimensional definition of projective object. This is related to various concepts in the literature.
- This has applications to formulating the axiom of choice and presentation axioms in higher dimensional logic such as MLTT.

References I

- John Bourke and Richard Garner, Two-dimensional regularity and exactness, Journal of Pure and Applied Algebra, 218 (7), pp. 1346–1371, 2014.
- Tomas Everaert, R.W. Kieboom and Tim Van der Linden, Model structures for homotopy of internal categories, Theory and Application of Categories, 15 (3), pp. 66–94, 2005.
- Calum Hughes, The algebraic internal groupoid model of Martin-Löf type theory, preprint, 2025.
- Calum Hughes, The constructive elementary theory of the 2-category of small categories, in preparation, 2025.

References II

- Calum Hughes and Adrian Miranda, The elementary theory of the 2-category of small categories, Theory and Applications of Categories, Vol. 43, 2025, No. 8, pp 196-242.
- F. William Lawvere, An elementary theory of the category of sets, Proceedings of the national academy of sciences, 52(6):1506-1511, 1964.
- F. William Lawvere, The category of categories as a foundation for mathematics, Proceedings of the Conference on Categorical Algebra: La Jolla 1965, pages 1-20. Springer, 1966.
- Gerhard Osius. Categorical set theory: a characterization of the category of sets. Journal of Pure and Applied Algebra, 4(1):79-119, 1974.

References III

 Eric Palmgren, Constructivist and structuralist foundations: Bishop's and Lawvere's theories of sets, Annals of Pure and Applied Logic, 163 (10), pp. 1284–1399, 2010.