# A Visual Introduction to Homology and Homotopy 

Calum Hughes

School of Mathematics and Statistics, University of Sheffield
28th April 2022

The
University
Of
Sheffield.

## Topological Structures

Are these two shapes the same?


## Topological Structures

Are these two shapes the same?


## Topological Structures

Are these two shapes the same?


## Topological Structures

How about these two?


## Topological Structures

How about these two?


How would we go about proving that they are not?

## Algebraic Topology

The aim of algebraic topology is to translate topological questions into algebraic ones.


Topology Algebra


## Building Blocks

We use simplices as 'building blocks' . These can be thought of as $n$-dimensional triangles.

- A 0 -simplex is a point. We call this $\Delta^{0}$.


## Building Blocks

We use simplices as 'building blocks' . These can be thought of as $n$-dimensional triangles.

- A 0 -simplex is a point. We call this $\Delta^{0}$.
- The 1 -simplex is a line. We call this $\Delta^{1}$.


## Building Blocks

We use simplices as 'building blocks'. These can be thought of as $n$-dimensional triangles.

- A 0-simplex is a point. We call this $\Delta^{0}$.
- The 1-simplex is a line. We call this $\Delta^{1}$. $\quad \circ$
- The 2-simplex is a triangle. We call this $\Delta^{2}$.



## Building Blocks

We use simplices as 'building blocks' . These can be thought of as $n$-dimensional triangles.

- A 0 -simplex is a point. We call this $\Delta^{0}$.
- The 1 -simplex is a line. We call this $\Delta^{1} . \bullet \quad$
- The 2 -simplex is a triangle. We call this $\Delta^{2}$.

- The 3-simplex is a tetrahedron. We call this $\Delta^{3}$.



## Building Blocks

We use simplices as 'building blocks' . These can be thought of as $n$-dimensional triangles.

- A 0 -simplex is a point. We call this $\Delta^{0}$.
- The 1 -simplex is a line. We call this $\Delta^{1} . \bullet \quad$
- The 2 -simplex is a triangle. We call this $\Delta^{2}$.

- The 3-simplex is a tetrahedron. We call this $\Delta^{3}$.

- and so on up to higher dimensions...


## Face maps

We can consider maps onto the faces of simplices. These maps help us "glue" the shape back together.


## Singular Complex

Let $X$ be a topological space.
Consider the set:

$$
S_{n} X=\left\{u: \Delta^{n} \rightarrow X: u \text { is continuous }\right\}
$$



## Singular Complex

Let $X$ be a topological space.
Consider the set:

$$
S_{0} X=\left\{u: \Delta^{0} \rightarrow X: u \text { is continuous }\right\}
$$



## Singular Complex

Let $X$ be a topological space.
Consider the set:

$$
S_{0} X=\left\{u: \Delta^{0} \rightarrow X: u \text { is continuous }\right\}
$$



## Singular Complex

Let $X$ be a topological space.
Consider the set:

$$
S_{0} X=\left\{u: \Delta^{0} \rightarrow X: u \text { is continuous }\right\}=X
$$



## Singular Complex

Let $X$ be a topological space.
Consider the set:

$$
S_{1} X=\left\{u: \Delta^{1} \rightarrow X: u \text { is continuous }\right\}
$$



## Singular Complex

Let $X$ be a topological space.
Consider the set:

$$
S_{1} X=\left\{u: \Delta^{1} \rightarrow X: u \text { is continuous }\right\}
$$



## Singular Complex

Let $X$ be a topological space.
Consider the set:

$$
S_{2} X=\left\{u: \Delta^{2} \rightarrow X: u \text { is continuous }\right\}
$$



## Singular Complex

Let $X$ be a topological space.
Consider the set:

$$
S_{2} X=\left\{u: \Delta^{2} \rightarrow X: u \text { is continuous }\right\}
$$



## Singular Complex

Let $X$ be a topological space.
Consider the set:

$$
S_{2} X=\left\{u: \Delta^{2} \rightarrow X: u \text { is continuous }\right\}
$$

$$
x
$$



## Singular Complex

Let $X$ be a topological space.
Consider the set:

$$
S_{2} X=\left\{u: \Delta^{2} \rightarrow X: u \text { is continuous }\right\}
$$



## Singular Complex

Let $X$ be a topological space.
Consider the set:

$$
S_{2} X=\left\{u: \Delta^{2} \rightarrow X: u \text { is continuous }\right\}
$$



## The translation

$$
\left.\begin{array}{c}
\left\{\begin{array}{c}
\text { Topological } \\
\text { spaces }
\end{array}\right\} \underset{\mid-1}{\leftrightarrows}
\end{array} \begin{array}{c}
\text { Simplicial } \\
\text { Sets }
\end{array}\right\}
$$

$$
u_{1}, u_{2}, u_{3} \in S_{2} X
$$

## The translation

$$
\begin{gathered}
\left\{\begin{array}{c}
\text { Topological } \\
\text { spaces }
\end{array}\right\} \underset{\overleftarrow{T}}{\stackrel{S_{*}}{\leftrightarrows}}\left\{\begin{array}{c}
\text { Simplicial } \\
\text { Sets }
\end{array}\right\} \xrightarrow{\mathbb{Z}}\left\{\begin{array}{c}
\text { abelian } \\
\text { groups }
\end{array}\right\} \\
X \xrightarrow{S_{*}} S_{*} X \xrightarrow{\mathbb{Z}} \mathbb{Z} S_{*} X
\end{gathered}
$$

$$
u_{1}, u_{2}, u_{3} \in S_{2} X
$$

$$
3 u_{1}-4 u_{2}+15 u_{3} \in \mathbb{Z} S_{2} X
$$

## Why?




## Why?




## Why?



We would like to be able to say something like $u+v=w$.

## Homology



## Homology



## Homology



## Homology



## Homology



## Homology



Homology


## Homology



## Homology



## Homology



## Homology



## Simplicial Homology



## Simplicial Homology



## Simplicial Homology



So cycles correspond to maps $u \in S_{1} X$ with $u \circ \delta_{0}\left(\Delta_{1}\right)-u \circ \delta_{1}\left(\Delta_{1}\right)=0$.

## Simplicial Homology



So cycles correspond to maps $u \in S_{1} X$ with $u \circ \delta_{0}\left(\Delta_{1}\right)-u \circ \delta_{1}\left(\Delta_{1}\right)=0$. For $u \in S_{n} X$ we define the differential $d_{n}: S_{n} X \rightarrow S_{n-1} X$ by $d_{n}(u)=\sum_{i=0}^{n}(-1)^{i} u \circ \delta_{i}$.

## Simplicial Homology



So cycles correspond to maps $u \in S_{1} X$ with $u \circ \delta_{0}\left(\Delta_{1}\right)-u \circ \delta_{1}\left(\Delta_{1}\right)=0$. For $u \in S_{n} X$ we define the differential $d_{n}: S_{n} X \rightarrow S_{n-1} X$ by $d_{n}(u)=\sum_{i=0}^{n}(-1)^{i} u \circ \delta_{i}$. So an $n$-cycle is a map $u \in \mathbb{Z} S_{n} X$ with $u \in \operatorname{ker}\left(d_{n}\right)$.

## Simplicial Homology



## Simplicial Homology



## Simplicial Homology



So, two $n$-cycles are to be thought of as the same if they can be "filled in" by a collection of ( $n+1$ )-simplices.

## Simplicial Homology



So, two $n$-cycles are to be thought of as the same if they can be "filled in" by a collection of $(n+1)$-simplices. Now, $\left.d_{2}\right)=u-v$, so $u-v \in \operatorname{Im}\left(d_{2}\right)$.

## Simplicial Homology



So, two $n$-cycles are to be thought of as the same if they can be "filled in" by a collection of ( $n+1$ )-simplices. Now, $d_{2}(\infty)=u-v$, so $u-v \in \operatorname{Im}\left(d_{2}\right)$. So two $n$-cycles are the same iff their difference is in $\operatorname{Im}\left(d_{n+1}\right)$.

## Homology Groups

We describe this situation algebraically:

- Both $\operatorname{Im}\left(d_{n+1}\right)$ and $\operatorname{ker}\left(d_{n}\right)$ are subgroups of $\mathbb{Z} S_{n} X$.


## Homology Groups

We describe this situation algebraically:

- Both $\operatorname{Im}\left(d_{n+1}\right)$ and $\operatorname{ker}\left(d_{n}\right)$ are subgroups of $\mathbb{Z} S_{n} X$.
- $d_{n} \circ d_{n+1}=0$, so $\operatorname{Im}\left(d_{n+1}\right)$ is a subgroup of $\operatorname{ker}\left(d_{n}\right)$.


## Homology Groups

We describe this situation algebraically:

- Both $\operatorname{Im}\left(d_{n+1}\right)$ and $\operatorname{ker}\left(d_{n}\right)$ are subgroups of $\mathbb{Z} S_{n} X$.
- $d_{n} \circ d_{n+1}=0$, so $\operatorname{Im}\left(d_{n+1}\right)$ is a subgroup of $\operatorname{ker}\left(d_{n}\right)$.
- Therefore, we can form the quotient group $H_{n}\left(\mathbb{Z} S_{n} X\right)=\operatorname{ker}\left(d_{n}\right) / \operatorname{lm}\left(d_{n+1}\right)$.


## Homology Groups

We describe this situation algebraically:

- Both $\operatorname{Im}\left(d_{n+1}\right)$ and $\operatorname{ker}\left(d_{n}\right)$ are subgroups of $\mathbb{Z} S_{n} X$.
- $d_{n} \circ d_{n+1}=0$, so $\operatorname{Im}\left(d_{n+1}\right)$ is a subgroup of $\operatorname{ker}\left(d_{n}\right)$.
- Therefore, we can form the quotient group $H_{n}\left(\mathbb{Z} S_{n} X\right)=\operatorname{ker}\left(d_{n}\right) / \operatorname{lm}\left(d_{n+1}\right)$.
- This identifies cycles that can be morphed into one another!


## Homology Groups

We describe this situation algebraically:

- Both $\operatorname{Im}\left(d_{n+1}\right)$ and $\operatorname{ker}\left(d_{n}\right)$ are subgroups of $\mathbb{Z} S_{n} X$.
- $d_{n} \circ d_{n+1}=0$, so $\operatorname{Im}\left(d_{n+1}\right)$ is a subgroup of $\operatorname{ker}\left(d_{n}\right)$.
- Therefore, we can form the quotient group $H_{n}\left(\mathbb{Z} S_{n} X\right)=\operatorname{ker}\left(d_{n}\right) / \operatorname{lm}\left(d_{n+1}\right)$.
- This identifies cycles that can be morphed into one another!
- This is an invariant under homeomorphism of topological spaces: if $X$ is homeomorphic to $Y$, then $H_{n}\left(\mathbb{Z} S_{n} X\right)=H_{n}\left(\mathbb{Z} S_{n} Y\right)$ for all $n$.


## Homology Groups

We describe this situation algebraically:

- Both $\operatorname{Im}\left(d_{n+1}\right)$ and $\operatorname{ker}\left(d_{n}\right)$ are subgroups of $\mathbb{Z} S_{n} X$.
- $d_{n} \circ d_{n+1}=0$, so $\operatorname{Im}\left(d_{n+1}\right)$ is a subgroup of $\operatorname{ker}\left(d_{n}\right)$.
- Therefore, we can form the quotient group $H_{n}\left(\mathbb{Z} S_{n} X\right)=\operatorname{ker}\left(d_{n}\right) / \operatorname{lm}\left(d_{n+1}\right)$.
- This identifies cycles that can be morphed into one another!
- This is an invariant under homeomorphism of topological spaces: if $X$ is homeomorphic to $Y$, then $H_{n}\left(\mathbb{Z} S_{n} X\right)=H_{n}\left(\mathbb{Z} S_{n} Y\right)$ for all $n$.
- The converse is often useful: if $H_{n}\left(\mathbb{Z} S_{n} X\right) \neq H_{n}\left(\mathbb{Z} S_{n} Y\right)$, then $X$ is not homeomorphic to $Y$.


## Back to our example...



We can caluclate that $H_{1}\left(\mathbb{Z} S_{1} X\right) \cong \mathbb{Z}$, whereas $H_{1}\left(\mathbb{Z} S_{1} Y\right) \cong \mathbb{Z}^{2}$ and so $X$ is not homeomorphic to $Y$ !

## Homotopy



## Simplicial Homotopy



## Simplicial Homotopy



We say $u$ is homotopic to $v$, or $u \sim v$.

## Simplicial Homotopy



We say $u$ is homotopic to $v$, or $u \sim v$. Also $u-v$ is a cycle, i.e. $u-v \in \operatorname{ker}\left(d_{n}\right)$.

## Homotopy Groups

We describe this situation algebraically:

- $\operatorname{ker}\left(d_{n}\right)$ is a subgroup of $\mathbb{Z} S_{n} X$.


## Homotopy Groups

We describe this situation algebraically:

- $\operatorname{ker}\left(d_{n}\right)$ is a subgroup of $\mathbb{Z} S_{n} X$.
- For abelian groups, $\sim$ is an equivalence relation.


## Homotopy Groups

We describe this situation algebraically:

- $\operatorname{ker}\left(d_{n}\right)$ is a subgroup of $\mathbb{Z} S_{n} X$.
- For abelian groups, $\sim$ is an equivalence relation.
- Therefore, we can form the quotient group $\pi_{n}\left(\mathbb{Z} S_{n} X\right)=\operatorname{ker}\left(d_{n}\right) / \sim$.


## Homotopy Groups

We describe this situation algebraically:

- $\operatorname{ker}\left(d_{n}\right)$ is a subgroup of $\mathbb{Z} S_{n} X$.
- For abelian groups, $\sim$ is an equivalence relation.
- Therefore, we can form the quotient group $\pi_{n}\left(\mathbb{Z} S_{n} X\right)=\operatorname{ker}\left(d_{n}\right) / \sim$.
- This identifies homotopic elements!


## Homotopy Groups

We describe this situation algebraically:

- $\operatorname{ker}\left(d_{n}\right)$ is a subgroup of $\mathbb{Z} S_{n} X$.
- For abelian groups, $\sim$ is an equivalence relation.
- Therefore, we can form the quotient group $\pi_{n}\left(\mathbb{Z} S_{n} X\right)=\operatorname{ker}\left(d_{n}\right) / \sim$.
- This identifies homotopic elements!
- This is also invariant under homeomorphism of topological spaces: if $X$ is homeomorphic to $Y$, then $\pi_{n}\left(\mathbb{Z} S_{n} X\right)=\pi_{n}\left(\mathbb{Z} S_{n} Y\right)$ for all $n$.


## Homotopy Groups

We describe this situation algebraically:

- $\operatorname{ker}\left(d_{n}\right)$ is a subgroup of $\mathbb{Z} S_{n} X$.
- For abelian groups, $\sim$ is an equivalence relation.
- Therefore, we can form the quotient group $\pi_{n}\left(\mathbb{Z} S_{n} X\right)=\operatorname{ker}\left(d_{n}\right) / \sim$.
- This identifies homotopic elements!
- This is also invariant under homeomorphism of topological spaces: if $X$ is homeomorphic to $Y$, then $\pi_{n}\left(\mathbb{Z} S_{n} X\right)=\pi_{n}\left(\mathbb{Z} S_{n} Y\right)$ for all $n$.
- The converse is often useful: if $\pi_{n}\left(\mathbb{Z} S_{n} X\right) \neq \pi_{n}\left(\mathbb{Z} S_{n} Y\right)$, then $X$ is not homeomorphic to $Y$.


## The Dold-Kan Correspondence

From how we've explained it, it is clear that $\pi_{1}(\mathbb{Z} S X)=H_{1}(\mathbb{Z} S X)$.

## The Dold-Kan Correspondence

From how we've explained it, it is clear that $\pi_{1}(\mathbb{Z} S X)=H_{1}(\mathbb{Z} S X)$. However, this is not true in general...

## The Dold-Kan Correspondence

From how we've explained it, it is clear that
$\pi_{1}(\mathbb{Z} S X)=H_{1}(\mathbb{Z} S X)$. However, this is not true in
general... Also, $\pi_{n}(\mathbb{Z} S X)$ is often really hard to calculate!

## The Dold-Kan Correspondence

From how we've explained it, it is clear that $\pi_{1}(\mathbb{Z} S X)=H_{1}(\mathbb{Z} S X)$. However, this is not true in general... Also, $\pi_{n}(\mathbb{Z} S X)$ is often really hard to calculate! Luckily, as a corollary of the Dold-Kan correspondence, we have the following:

## The Dold-Kan Correspondence

From how we've explained it, it is clear that $\pi_{1}(\mathbb{Z} S X)=H_{1}(\mathbb{Z} S X)$. However, this is not true in general... Also, $\pi_{n}(\mathbb{Z} S X)$ is often really hard to calculate! Luckily, as a corollary of the Dold-Kan correspondence, we have the following:

## Theorem

Let $X$ be a topological space. Then

$$
\pi_{n}(\mathbb{Z} S X)=H_{n}\left(\bigcap_{i=0}^{n-1} \operatorname{ker}\left(\delta_{i}: \mathbb{Z} S_{n} X \rightarrow \mathbb{Z} S_{n-1} X\right)\right)
$$

## Why bother with Homotopy?

- Homotopy captures more information about the space than homology.


## Why bother with Homotopy?

- Homotopy captures more information about the space than homology.
- This whole correspondence can be abstracted: for a much more general object called a simplicial object $A$ of the abelian category $\mathcal{A}$, we define

$$
\pi_{n}(A):=H_{n}\left(\bigcap_{i=0}^{n-1} \operatorname{ker}\left(\delta_{i}: A_{n} \rightarrow A_{n-1} X\right)\right) .
$$

This allows us to do homotopy theory in a more general setting.

## Why bother with Homotopy?

- Homotopy captures more information about the space than homology.
- This whole correspondence can be abstracted: for a much more general object called a simplicial object $A$ of the abelian category $\mathcal{A}$, we define

$$
\pi_{n}(A):=H_{n}\left(\bigcap_{i=0}^{n-1} \operatorname{ker}\left(\delta_{i}: A_{n} \rightarrow A_{n-1} X\right)\right) .
$$

This allows us to do homotopy theory in a more general setting.

- Abstract homotopy is useful in many other areas, such as computer science and logic with the invention of Homotopy Type Theory.


## References

For further reading, I recommend:

- To learn more about homological algebra: Charles. A Weibel An Introduction to Homological Algebra, 1995.
- To learn more about simplicial sets: Greg Friedman An Elementary Illustrated Introduction to Simplicial Sets, 2011.
- For a very readable introduction category theory, a great souce is: Emily Riehl, Category Theory in Context, 2014.

