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Algebraic Topology

The aim of algebraic topology is to translate topological
questions into algebraic ones.

Topology Algebra



Building Blocks

We use simplices as ‘building blocks’ . These can be
thought of as n-dimensional triangles.

A 0-simplex is a point. We call this ∆0.

The 1-simplex is a line. We call this ∆1.
The 2-simplex is a triangle. We call this ∆2.

The 3-simplex is a tetrahedron. We call this ∆3.

and so on up to higher dimensions...
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Face maps
We can consider maps onto the faces of simplices. These
maps help us “glue” the shape back together.
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Singular Complex

Let X be a topological space.
Consider the set:

SnX = {u : ∆n → X : u is continuous}

X
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Simplicial Homology

u

So cycles correspond to maps u ∈ S1X with
u ◦ δ0(∆1)− u ◦ δ1(∆1) = 0. For u ∈ SnX we define the
differential dn : SnX → Sn−1X by dn(u) =

∑n
i=0(−1)iu ◦ δi .

So an n-cycle is a map u ∈ ZSnX with u ∈ ker(dn).
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Simplicial Homology

u

v

So, two n-cycles are to be thought of as the same if they
can be “filled in” by a collection of (n + 1)-simplices. Now,
d2( ) = u − v , so u − v ∈ Im(d2). So two n-cycles are
the same iff their difference is in Im(dn+1).



Simplicial Homology

u

v

So, two n-cycles are to be thought of as the same if they
can be “filled in” by a collection of (n + 1)-simplices. Now,
d2( ) = u − v , so u − v ∈ Im(d2). So two n-cycles are
the same iff their difference is in Im(dn+1).



Simplicial Homology

u

v

So, two n-cycles are to be thought of as the same if they
can be “filled in” by a collection of (n + 1)-simplices.

Now,
d2( ) = u − v , so u − v ∈ Im(d2). So two n-cycles are
the same iff their difference is in Im(dn+1).



Simplicial Homology

u

v

So, two n-cycles are to be thought of as the same if they
can be “filled in” by a collection of (n + 1)-simplices. Now,
d2( ) = u − v , so u − v ∈ Im(d2).

So two n-cycles are
the same iff their difference is in Im(dn+1).



Simplicial Homology

u

v

So, two n-cycles are to be thought of as the same if they
can be “filled in” by a collection of (n + 1)-simplices. Now,
d2( ) = u − v , so u − v ∈ Im(d2). So two n-cycles are
the same iff their difference is in Im(dn+1).



Homology Groups

We describe this situation algebraically:
Both Im(dn+1) and ker(dn) are subgroups of ZSnX .

dn ◦ dn+1 = 0, so Im(dn+1) is a subgroup of ker(dn).
Therefore, we can form the quotient group
Hn(ZSnX ) = ker(dn)/ Im(dn+1).
This identifies cycles that can be morphed into one
another!
This is an invariant under homeomorphism of
topological spaces: if X is homeomorphic to Y , then
Hn(ZSnX ) = Hn(ZSnY ) for all n.
The converse is often useful: if
Hn(ZSnX ) ̸= Hn(ZSnY ), then X is not homeomorphic
to Y .
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Back to our example...

X Y

We can caluclate that H1(ZS1X ) ∼= Z, whereas
H1(ZS1Y ) ∼= Z2 and so X is not homeomorphic to Y !
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Simplicial Homotopy
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We say u is homotopic to v , or u ∼ v .Also u − v is a
cycle, i.e. u − v ∈ ker(dn).
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For abelian groups, ∼ is an equivalence relation.
Therefore, we can form the quotient group
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This is also invariant under homeomorphism of
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The Dold-Kan Correspondence

From how we’ve explained it, it is clear that
π1(ZSX ) = H1(ZSX ).

However, this is not true in
general... Also, πn(ZSX ) is often really hard to calculate!
Luckily, as a corollary of the Dold-Kan correspondence,
we have the following:

Theorem
Let X be a topological space. Then

πn(ZSX ) = Hn

(
n−1⋂
i=0

ker(δi : ZSnX → ZSn−1X )

)
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Why bother with Homotopy?

Homotopy captures more information about the
space than homology.

This whole correspondence can be abstracted: for a
much more general object called a simplicial object A
of the abelian category A, we define

πn(A) := Hn

(
n−1⋂
i=0

ker(δi : An → An−1X )

)
.

This allows us to do homotopy theory in a more
general setting.
Abstract homotopy is useful in many other areas,
such as computer science and logic with the
invention of Homotopy Type Theory.



Why bother with Homotopy?

Homotopy captures more information about the
space than homology.
This whole correspondence can be abstracted: for a
much more general object called a simplicial object A
of the abelian category A, we define

πn(A) := Hn

(
n−1⋂
i=0

ker(δi : An → An−1X )

)
.

This allows us to do homotopy theory in a more
general setting.

Abstract homotopy is useful in many other areas,
such as computer science and logic with the
invention of Homotopy Type Theory.



Why bother with Homotopy?

Homotopy captures more information about the
space than homology.
This whole correspondence can be abstracted: for a
much more general object called a simplicial object A
of the abelian category A, we define

πn(A) := Hn

(
n−1⋂
i=0

ker(δi : An → An−1X )

)
.

This allows us to do homotopy theory in a more
general setting.
Abstract homotopy is useful in many other areas,
such as computer science and logic with the
invention of Homotopy Type Theory.



References

For further reading, I recommend:
To learn more about homological algebra: Charles. A
Weibel An Introduction to Homological Algebra, 1995.
To learn more about simplicial sets: Greg Friedman
An Elementary Illustrated Introduction to Simplicial
Sets , 2011.
For a very readable introduction category theory, a
great souce is: Emily Riehl, Category Theory in
Context , 2014.

https://www.maths.ed.ac.uk/~v1ranick/papers/friedman5.pdf
https://www.maths.ed.ac.uk/~v1ranick/papers/friedman5.pdf
https://math.jhu.edu/~eriehl/context.pdf
https://math.jhu.edu/~eriehl/context.pdf

	Algebraic Topology
	Simplices
	Homology

