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Elementary topos theory
1-cats p2,1q-cats

Object elementary topos

Weber p2,1q-topos

internal logic 0 dimensional MLTT

?

Key example Set

...?

Definition (Lawvere-Tierney)
An elementary

p2,1q-

topos is a cartesian closed

p2,1q-

category with finite limits and a subobject classifier.
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Elementary topos theory
1-cats p2,1q-cats

Object elementary topos Weber p2,1q-topos

internal logic 0 dimensional MLTT ?

Key example Set ...?

Definition (Weber)
An elementary p2,1q-topos is a cartesian closed
p2,1q-category with finite limits and a discrete opfibration
classifier and a duality involution.
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Example of an Weber p2,1q-topos
Gpd the p2,1q-category of small groupoids:

finite limits and duality involution ✓

cartesian closed ✓

discrete opfib classifier ✓✗ (i.e. J Ñ tK,Ju)

GPD the p2,1q-category of large groupoids
finite limits and duality involution ✓

cartesian closed ✗

discrete opfib classifier ✓(i.e Set˚ Ñ Set)
GPDµ the p2,1q-category of µ-small groupoids for some
µ ą λ

finite limits and duality involution ✓

cartesian closed ✓

discrete opfib classifier ✓(i.e Setλ˚ Ñ Setλ)
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The category of classes

Von Neumann-Bernays-Gödel class theory:
Class has:

objects: tx a set : ϕpxq is true for ϕ a formula in FOLu

morphims: class functions

Properties:

Not cartesian closed: rX ,Y s wants to be
tF Ď X ˆ Y |...u but F is not neccessarily a set.
BUT if X is itself a set, then rX ,Y s exists.
It is regular, but not exact.

We define GPD :“ GpdpClassq.
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Class categories

1-cats p2,1q-cats

Object class categories

class p2,1q-categories

internal logic small obs: 0D MLTT

small obs: 1D MLTT

Key example Class

GPD

Class categories: (Joyal-Moerdijk), but see also
(Awodey-Butz-Simpson-Streicher, van den Berg-Moerdijk,
Simpson,...)
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Cateads

Definition (Bourne-Penon, Bourke)
For a p2,1q-category K, a catead is

C1 ˆC0 C1 C1 C0
m

p1

p2

d1

d0

i

such that pd1,d0q forms a 2-sided discrete fibration.
We call its 2-colimit a codescent object.

Codescent morphisms are a p2,1q-dimensional analogue
of a regular epimorphism in a 1-category.
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Exactness

Given f : X Ñ Y

f Ó f Ó f f Ó f X Cm

p1

p2

d1

d0

i q

Definition (Bourke-Garner)
A p2,1q-category K is called FBO-regular if it has finite
p2,1q-limits and codescent objects of higher kernels exist
and are closed under p2,1q-pullback.
It is called FBO-exact if codescent objects and morphisms
are effective.
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Pre-class structure
Let K be an FBO-regular and extensive p2,1q-category,
˝ : Kco Ñ K a duality involution and S a class of discrete
opfibrations. We call pK,˝ ,Sq a pre-class p2,1q-category.

We call a discrete object X P DiscpKq small if ! : X Ñ 1 is
in S.
We call a general object X P K small if there exists a
small discrete object and a codescent morphism
q : X ↠ X, such that ps, tq : q Ó q Ñ X ˝ ˆ X is in S.

q Ó q X

X X

t

s

q–

q

Define the full sub-p2,1q-category of small objects by
Ksmall.
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Axioms
Let pK,˝ ,Sq be a pre-class p2,1q-category. Consider:

1 Replacement.
2 Stability.
3 0 Ñ 1 and 1 ` 1 Ñ 1

belong to S.
4 Sums.
5 Quotients.
6 Exponentiality.
7 Representability.
8 Cancellability.
9 Small NNO.

10 Small projectivity.
11 Small exactness

Any isomorphism is in S
and S is closed under
composition.
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10 Small projectivity.
11 Small exactness

In any p2,1q-pullback square

A X

B Y

G F–

If F P S then G P S.
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5 Quotients.
6 Exponentiality.
7 Representability.
8 Cancellability.
9 Small NNO.

10 Small projectivity.
11 Small exactness

In any commutative diagram

X Y

Z

Q

G F

where F and G are discrete
opfibrations, if Q is
codescent and G belongs to
S then so does F .
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maps in S, which is iteself
in S.
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belong to S.
4 Sums.
5 Quotients.
6 Exponentiality.
7 Representability.
8 Cancellability.
9 Small NNO.

10 Small projectivity.
11 Small exactness

Every small discrete object
in K is projective, i.e.

HomGpdpX ,´q : K Ñ Gpd

preserves codescent
morphisms.
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Axioms
Let pK,˝ ,Sq be a pre-class p2,1q-category. Consider:

1 Replacement.
2 Stability.
3 0 Ñ 1 and 1 ` 1 Ñ 1

belong to S.
4 Sums.
5 Quotients.
6 Exponentiality.
7 Representability.
8 Cancellability.
9 Small NNO.

10 Small projectivity.
11 Small exactness

Effectivity of small
codescent objects/
morphisms.
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Axioms
Let pK,˝ ,Sq be a pre-class p2,1q-category. Consider:

1 Replacement.
2 Stability.
3 0 Ñ 1 and 1 ` 1 Ñ 1

belong to S.
4 Sums.
5 Quotients.
6 Exponentiality.
7 Representability.
8 Cancellability.
9 Small NNO.

10 Small projectivity.
11 Small exactness

Definition
If pK,˝ ,Sq satisfies 1-11,
we call it a class
p2,1q-category.
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Examples

K Ksmall S

GPD Gpd Set-sized fibers

GPDµ Gpdλ λ-small fibers

rAop,GPDs rAop,Gpds representably
Set-sized

K a stack Ksmall a small
stack

as above

? Gpdp Cq Gpdp Csmallq small fibers

12 / 21



Examples

K Ksmall S

GPD Gpd Set-sized fibers

GPDµ Gpdλ λ-small fibers

rAop,GPDs rAop,Gpds representably
Set-sized

K a stack Ksmall a small
stack

as above

? Gpdp Cq Gpdp Csmallq small fibers

12 / 21



Examples

K Ksmall S

GPD Gpd Set-sized fibers

GPDµ Gpdλ λ-small fibers

rAop,GPDs rAop,Gpds representably
Set-sized

K a stack Ksmall a small
stack

as above

? Gpdp Cq Gpdp Csmallq small fibers

12 / 21



Examples

K Ksmall S

GPD Gpd Set-sized fibers

GPDµ Gpdλ λ-small fibers

rAop,GPDs rAop,Gpds representably
Set-sized

K a stack Ksmall a small
stack

as above

? Gpdp Cq Gpdp Csmallq small fibers

12 / 21



Examples

K Ksmall S

GPD Gpd Set-sized fibers

GPDµ Gpdλ λ-small fibers

rAop,GPDs rAop,Gpds representably
Set-sized

K a stack Ksmall a small
stack

as above

GpdpAsmAq GpdpModAq modest fibers

? Gpdp Cq Gpdp Csmallq small fibers

12 / 21



Examples
K Ksmall S

GPD Gpd Set-sized fibers

GPDµ Gpdλ λ-small fibers

rAop,GPDs rAop,Gpds representably
Set-sized

K a stack Ksmall a small
stack

as above

? pGpdpAsmAq pGpdpModAq
modest fibers

? Gpdp Cq Gpdp Csmallq small fibers

12 / 21



Examples
K Ksmall S

GPD Gpd Set-sized fibers

GPDµ Gpdλ λ-small fibers

rAop,GPDs rAop,Gpds representably
Set-sized

K a stack Ksmall a small
stack

as above

? pGpdpAsmAq pGpdpModAq
modest fibers

? Gpdp Cq Gpdp Csmallq small fibers
12 / 21



Outline

1 Motivation

2 Axioms

3 Properties

4 Extra axioms

5 Future work

13 / 21



Properties

Let pK, ˝,Sq be a class p2,1q-category.
for X P Ksmall, rX,Ys exists.

Ksmall is cartesian closed.
there exists a small object 2 d 1.
Ksmall is extensive.
Ksmall is finitely (co)complete.
There is a Yoneda lemma for K (cf. (Weber, Street)).
There is a Grothendieck construction.
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Properties

Let pK, ˝,Sq be a class p2,1q-category.

Theorem
The p2,1q-category Ksmall » GpdpEq for E :“ DiscpKq.
Moreover, E is a locally cartesian closed, extensive
category with a natural numbers object.

The hard part of this follows from John Bourke’s PhD
thesis.
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Theorem
The p2,1q-category Ksmall » GpdpEq for E :“ DiscpKq.
Moreover, E is a locally cartesian closed, extensive
category with a natural numbers object.

The hard part of this follows from John Bourke’s PhD
thesis.

Theorem
Ksmall is a model of MLTT. Therefore K models MLTT with
a univalent universe of small 0-types.

(See HoTTLEAN)
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Extra axioms

Let pK,˝ ,Sq be a class p2,1q-category. Consider:
Inspired by Lurie’s 8-toposes...

K has a small full subobject classifier.

Theorem
The p2,1q-category Ksmall » GpdpEq for E :“ DiscpKq.
Moreover, E is an elementary topos.
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Future work

More algebraic set theory.

Removing the duality involution.
Considering GpdpAsmAq...
Optimising the axioms.
Stability under (op)fibrational slicing.
Comparison to Joseph Helfer’s 2-toposes ù the
classifier is an “internal 1-topos”.
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Summary

1-cats p2,1q-cats

Object class categories class p2,1q-categories

internal logic small obs: 0D MLTT small obs: 1D MLTT

Key example Class GPD

Adding axioms to a class p2,1q-category, we can give an
p2,1q-categorical description of a logic which is as
powerful as ZFC.
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