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Elementary topos theory
1-cats (2,1)-cats
Object elementary topos

internal logic | 0 dimensional MLTT

Key example Set

Definition (Lawvere-Tierney) |

An elementary topos is a cartesian closed
category with finite limits and a subobject classifier.

.
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Elementary topos theory

1-cats (2,1)-cats
Object elementary topos | Weber (2, 1)-topos
internal logic | 0 dimensional MLTT ?
Key example Set o ?

Definition (Weber)

An elementary (2, 1)-topos is a cartesian closed
(2, 1)-category with finite limits and a discrete opfibration

classifier and a duality involution.
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Example of an Weber (2, 1)-topos

Gpd the (2, 1)-category of small groupoids:
@ finite limits and duality involution v/
@ cartesian closed v’
@ discrete opfib classifier v X (i.e. T — {1, T})
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Gpd the (2, 1)-category of small groupoids:

@ finite limits and duality involution v/

@ cartesian closed v/

@ discrete opfib classifier v X (i.e. T — {1, T})
GPD the (2, 1)-category of large groupoids

@ finite limits and duality involution v/

@ cartesian closed X

@ discrete opfib classifier v/(i.e Set, — Set)

GPD,, the (2, 1)-category of x-small groupoids for some
> A

@ finite limits and duality involution v/
@ cartesian closed v/
@ discrete opfib classifier v'(i.e Set,,, — Set,)
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The category of classes

Von Neumann-Bernays-Godel class theory:
Class has:

@ objects: {x a set: ¢(x) is true for ¢ a formula in FOL}
@ morphims: class functions
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The category of classes

Von Neumann-Bernays-Godel class theory:
Class has:

@ objects: {x a set: ¢(x) is true for ¢ a formula in FOL}
@ morphims: class functions
Properties:

@ Not cartesian closed: [ X, Y] wants to be
{F < X x Y|...} but F is not neccessarily a set.

@ BUT if X is itself a set, then [ X, Y] exists.
@ ltis regular, but not exact.
We define GPD := Gpd(Class).
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Class categories

1-cats (2,1)-cats
Object class categories

internal logic | small obs: OD MLTT

Key example Class

Class categories: (Joyal-Moerdijk), but see also
(Awodey-Butz-Simpson-Streicher, van den Berg-Moerdijk,
Simpson,...)

6/21



Class categories

1-cats (2,1)-cats
Object class categories | class (2, 1)-categories

internal logic | small obs: OD MLTT | small obs: 1D MLTT

Key example Class GPD

Class categories: (Joyal-Moerdijk), but see also
(Awodey-Butz-Simpson-Streicher, van den Berg-Moerdijk,
Simpson,...)

6/21



0 Motivation

© Axioms
Q Properties

@ Extra axioms

Q Future work

7/21



Cateads

Definition (Bourne-Penon, Bourke)
For a (2, 1)-category A, a catead is

P d
m i

C~| X Co C1 > C1 < Co
P2’ d

such that (d,, dy) forms a 2-sided discrete fibration.
We call its 2-colimit a codescent object.

Codescent morphisms are a (2, 1)-dimensional analogue
of a regular epimorphism in a 1-category.
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Givenf: X—-Y
P d'1
FLFLF "5 flfel x5 C
— —

P2 o
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Exactness

Givenf: X —->Y
P ai
— —
flLILfF—"sflf+— X% C
— —
P2 Ck

Definition (Bourke-Garner) |
A (2,1)-category K« is called Fgo-regular if it has finite
(2,1)-limits and codescent objects of higher kernels exist

and are closed under (2, 1)-pullback.
It is called Fgo-exact if codescent objects and morphisms

are effective. )
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Pre-class structure

Let A be an Fgo-regular and extensive (2, 1)-category,
°: K% — X aduality involution and & a class of discrete
opfibrations. We call (:A,°, ) a pre-class (2,1)-category.
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°: K% — X aduality involution and & a class of discrete
opfibrations. We call (:A,°, ) a pre-class (2,1)-category.
We call a discrete object X € Disc(:A) smallif! : X — 1is
in .

We call a general object X € & small if there exists a
small discrete object and a codescent morphism

qg: X — X suchthat(s,t):q| g— X°x Xisin¥.

!
|

q

g —— X
~ q
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Pre-class structure

Let A be an Fgo-regular and extensive (2, 1)-category,

°: K% — X aduality involution and & a class of discrete
opfibrations. We call (:A,°, ) a pre-class (2,1)-category.
We call a discrete object X € Disc(:A) smallif! : X — 1is
in .

We call a general object X € & small if there exists a
small discrete object and a codescent morphism

qg: X — X suchthat(s,t):q| g— X°x Xisin¥.

qlg —— X
tl ~ lq
X — X
Define the full sub-(2, 1)-category of small objects by
j{smaIL
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Axioms
Let (X ,°, %) be a pre-class (2, 1)-category. Consider:

@ Replacement.

Q@ Stability.
Q@ 0->1and1+1-1

belong to .
O Sums. Any isomorphism is in &
o QUOt'entS_- . anc)JI/ S is clopsed under
© Exponentiality. composition.

@ Representability.
© Cancellability.

© Small NNO.

@ Small projectivity.
@ Small exactness
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@ Replacement.

Q@ Stability.

Q@Q0->1and1+1 -1
belong to .

Q Sums.

@ Quotients.

© Exponentiality.
@ Representability.
© Cancellability.

© Small NNO.

@ Small projectivity.
@ Small exactness

In any (2, 1)-pullback square

A— X

Gl >~ lF
B—Y

If Fe ¥ then Ge .
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Axioms
Let (X ,°, %) be a pre-class (2, 1)-category. Consider:

@ Replacement.

@ Stability. In any commutative diagram
Q@0-1and1+1 -1
belong to . X Q oY

© Sums. \ /
@ Quotients. G F

© Exponentiality. z

@ Representability. where F and G are discrete
©Q Cancellability. opfibrations, if Q is

© Small NNO. codescent and G belongs to
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Q Sums.

© Quotients.

© Exponentiality.
@ Representability.
© Cancellability.

© Small NNO.

@ Small projectivity.
@ Small exactness

Let F: X — Y and

G:Y — Z be discrete
opfibrations. If GF € & then
Fe?.
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Axioms

Let (X ,°, %) be a pre-class (2, 1)-category. Consider:

@ Replacement.

Q@ Stability.

Q@Q0->1and1+1 -1
belong to .

©Q Sums.

@ Quotients.

© Exponentiality.
@ Representability.
© Cancellability.

© Small NNO.

@ Small projectivity.
@ Small exactness

Every small discrete object
in & is projective, i.e.

HomGpd(X, —) K — Gpd

preserves codescent
morphisms.
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Axioms
Let (X ,°, %) be a pre-class (2, 1)-category. Consider:

@ Replacement.

@ Stability.

Q@Q0->1and1+1—-1
belong to .

Q Sums. Definition |

@ Quotients. If (x>, ) satisfies 1-11,

© Exponentiality. we call it a class

@ Representability. (2,1)-category.
@ Cancellability.

© Small NNO.

@ Small projectivity.
@ Small exactness
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K j{small S
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Examples

y{ %small y

GPD Gpd Set-sized fibers

GPD, Gpd, A-small fibers

[4°P, GPD] [«4°P, Gpd] representably
Set-sized

J a stack HKsmar @ small | as above

stack

modest fibers

? pGpd(Asm,) | pGpd(Mod,) |

? Gpd(6)

Gpd (cgsmall)

small fibers
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Let (A,0,%) be a class (2, 1)-category.
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Let (#,0,%) be a class (2, 1)-category.
@ for X € Kgman, [X, Y] exists.
@ Hsmay is cartesian closed.
@ there exists a small object2© 1.
@ Hsman IS extensive.
@ Hgma is finitely (co)complete.
@ There is a Yoneda lemma for & (cf. (Weber, Street)).
@ There is a Grothendieck construction.
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Properties

Let (#,0,%) be a class (2, 1)-category.

Theorem |
The (2,1)-category K smar ~ Gpd(&) for & := Disc(K).
Moreover, & is a locally cartesian closed, extensive
category with a natural numbers object.

The hard part of this follows from John Bourke’s PhD
thesis.

14/21



Properties

Let (#,0,%) be a class (2, 1)-category.

Theorem |
The (2,1)-category K smar ~ Gpd(&) for & := Disc(A).
Moreover, & is a locally cartesian closed, extensive
category with a natural numbers object.

The hard part of this follows from John Bourke’s PhD
thesis.

Theorem |

Hsman IS @ model of MLTT. Therefore KX models MLTT with
a univalent universe of small 0-types.

(See HOTTLEAN)
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Extra axioms

Let (% ,°,%) be a class (2, 1)-category. Consider:
Inspired by Lurie’s co-toposes...

@ % has a small full subobject classifier.

Theorem |
The (2,1)-category K sman ~ Gpd(&) for & := Disc(K).
Moreover, & is an elementary topos.
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@ More algebraic set theory.
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Future work

@ More algebraic set theory.

@ Removing the duality involution.

@ Considering Gpd(Asmy)...

@ Optimising the axioms.

@ Stability under (op)fibrational slicing.

@ Comparison to Joseph Helfer's 2-toposes ~~ the
classifier is an “internal 1-topos”.
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Summary

1-cats (2,1)-cats
Object class categories | class (2, 1)-categories

internal logic | small obs: OD MLTT | small obs: 1D MLTT

Key example Class GPD

Adding axioms to a class (2, 1)-category, we can give an
(2,1)-categorical description of a logic which is as
powerful as ZFC.

19/21



References |

John Bourke, Codescent objects in 2-dimensional
universal algebra, PhD thesis, University of Sydney
2010.

John Bourke and Richard Garner, Two-dimensional
regularity and exactness, Journal of Pure and
Applied Algebra, 218 (7), pp. 1346—1371, 2014.
Calum Hughes and Adrian Miranda, The elementary
theory of the 2-category of small categories, Theory
and Applications of Categories, Vol. 43, 2025, No. 8,
pp 196-242.

Calum Hughes and Adrian Miranda, Colimits of
internal categories, preprint, 2025.

Calum Hughes, The algebraic internal groupoidal
model of type theory, preprint, 2025.

20/21



References lI

@ Andre Joyal, leke Moerdijk, Algebraic set theory, Vol.
220. Cambridge University Press, 1995.

@ Algebraic set theory library:
https://www.phil.cmu.edu/projects/ast/

21/21


https://www.phil.cmu.edu/projects/ast/

	Motivation
	Axioms
	Properties
	Extra axioms
	Future work

