Class (2, 1)-categories

Calum Hughes

HoTT MURI 2025 work in progress

Outline

- Motivation
- 2 Axioms
- 3 Properties
- Extra axioms
- 5 Future work

Elementary topos theory

	1-cats	(2,1)-cats
Object	elementary topos	
internal logic	0 dimensional MLTT	
Key example	Set	

Definition (Lawvere-Tierney)

An elementary topos is a cartesian closed category with finite limits and a subobject classifier.

Elementary topos theory

	1-cats	(2, 1)-cats
Object	elementary topos	Weber (2, 1)-topos
internal logic	0 dimensional MLTT	?
Key example	Set	?

Definition (Weber)

An elementary (2, 1)-topos is a cartesian closed (2, 1)-category with finite limits and a discrete optibration classifier and a duality involution.

Example of an Weber (2, 1)-topos

Gpd the (2, 1)-category of small groupoids:

- finite limits and duality involution √
- cartesian closed √
- discrete opfib classifier $\checkmark X$ (i.e. $\top \rightarrow \{\bot, \top\}$)

Example of an Weber (2, 1)-topos

Gpd the (2, 1)-category of small groupoids:

- finite limits and duality involution √
- cartesian closed √
- discrete opfib classifier $\checkmark X$ (i.e. $\top \rightarrow \{\bot, \top\}$)

GPD the (2, 1)-category of large groupoids

- finite limits and duality involution √
- cartesian closed X
- discrete opfib classifier √ (i.e Set_{*} → Set)

Example of an Weber (2, 1)-topos

Gpd the (2, 1)-category of small groupoids:

- finite limits and duality involution √
- cartesian closed √
- discrete opfib classifier $\checkmark X$ (i.e. $\top \rightarrow \{\bot, \top\}$)

GPD the (2, 1)-category of large groupoids

- finite limits and duality involution √
- cartesian closed X
- discrete opfib classifier √ (i.e Set_{*} → Set)

 $\mathbf{GPD}_{\boldsymbol{\mu}}$ the (2, 1)-category of $\boldsymbol{\mu}\text{-small}$ groupoids for some $\boldsymbol{\mu}>\lambda$

- finite limits and duality involution √
- cartesian closed √
- discrete opfib classifier √ (i.e Set_{λ*} → Set_λ)

Von Neumann-Bernays-Gödel class theory:

Class has:

- objects: $\{x \text{ a set} : \phi(x) \text{ is true for } \phi \text{ a formula in FOL}\}$
- morphims: class functions

Von Neumann-Bernays-Gödel class theory:

Class has:

- objects: $\{x \text{ a set} : \phi(x) \text{ is true for } \phi \text{ a formula in FOL}\}$
- morphims: class functions

Properties:

• Not cartesian closed: [X, Y] wants to be $\{F \subseteq X \times Y | ...\}$ but F is not neccessarily a set.

Von Neumann-Bernays-Gödel class theory:

Class has:

- objects: $\{x \text{ a set} : \phi(x) \text{ is true for } \phi \text{ a formula in FOL}\}$
- morphims: class functions

Properties:

- Not cartesian closed: [X, Y] wants to be $\{F \subseteq X \times Y | ...\}$ but F is not neccessarily a set.
- BUT if *X* is itself a set, then [*X*, *Y*] exists.

Von Neumann-Bernays-Gödel class theory:

Class has:

- objects: $\{x \text{ a set} : \phi(x) \text{ is true for } \phi \text{ a formula in FOL}\}$
- morphims: class functions

Properties:

- Not cartesian closed: [X, Y] wants to be $\{F \subseteq X \times Y | ...\}$ but F is not neccessarily a set.
- BUT if *X* is itself a set, then [*X*, *Y*] exists.
- It is regular, but not exact.

Von Neumann-Bernays-Gödel class theory:

Class has:

- objects: $\{x \text{ a set} : \phi(x) \text{ is true for } \phi \text{ a formula in FOL}\}$
- morphims: class functions

Properties:

- Not cartesian closed: [X, Y] wants to be $\{F \subseteq X \times Y | ...\}$ but F is not neccessarily a set.
- BUT if *X* is itself a set, then [*X*, *Y*] exists.
- It is regular, but not exact.

Von Neumann-Bernays-Gödel class theory:

Class has:

- objects: $\{x \text{ a set} : \phi(x) \text{ is true for } \phi \text{ a formula in FOL}\}$
- morphims: class functions

Properties:

- Not cartesian closed: [X, Y] wants to be $\{F \subseteq X \times Y | ...\}$ but F is not neccessarily a set.
- BUT if X is itself a set, then [X, Y] exists.
- It is regular, but not exact.

We define GPD := Gpd(Class).

Class categories

	1-cats	(2, 1)-cats
Object	class categories	
internal logic	small obs: 0D MLTT	
Key example	Class	

Class categories: (Joyal-Moerdijk), but see also (Awodey-Butz-Simpson-Streicher, van den Berg-Moerdijk, Simpson,...)

Class categories

	1-cats	(2,1)-cats
Object	class categories	class (2,1)-categories
internal logic	small obs: 0D MLTT	small obs: 1D MLTT
Key example	Class	GPD

Class categories: (Joyal-Moerdijk), but see also (Awodey-Butz-Simpson-Streicher, van den Berg-Moerdijk, Simpson,...)

Outline

- Motivation
- 2 Axioms
- 3 Properties
- Extra axioms
- 5 Future work

Cateads

Definition (Bourne-Penon, Bourke)

For a (2,1)-category \mathcal{K} , a *catead* is

$$C_1 imes_{C_0} C_1 \xrightarrow[p_2]{\frac{p_1}{m}} C_1 \xleftarrow[i]{\frac{d_1}{i}} C_0$$

such that (d_1, d_0) forms a 2-sided discrete fibration. We call its 2-colimit a *codescent object*.

Codescent morphisms are a (2,1)-dimensional analogue of a regular epimorphism in a 1-category.

Exactness

Given $f: X \to Y$

$$f\downarrow f\downarrow f\xrightarrow{\stackrel{p_1}{\longrightarrow}} f\downarrow f\xrightarrow{\stackrel{d_1}{\longleftarrow}} X\xrightarrow{q} C$$

Exactness

Given $f: X \to Y$

$$f \downarrow f \downarrow f \xrightarrow{\frac{\rho_1}{m}} f \downarrow f \xrightarrow{\frac{d_1}{i}} X \xrightarrow{q} C$$

Definition (Bourke-Garner)

A (2,1)-category \mathcal{K} is called \mathcal{F}_{BO} -regular if it has finite (2,1)-limits and codescent objects of higher kernels exist and are closed under (2,1)-pullback.

It is called \mathcal{F}_{BO} -exact if codescent objects and morphisms are effective.

Let \mathcal{K} be an \mathcal{F}_{BO} -regular and extensive (2,1)-category, $\circ: \mathcal{K}^{co} \to \mathcal{K}$ a duality involution and \mathcal{S} a class of discrete opfibrations. We call $(\mathcal{K}, \circ, \mathcal{S})$ a *pre-class* (2,1)-category.

Let \mathcal{K} be an \mathscr{F}_{BO} -regular and extensive (2,1)-category, $\circ: \mathcal{K}^{co} \to \mathcal{K}$ a duality involution and \mathscr{S} a class of discrete opfibrations. We call $(\mathcal{K}, \circ, \mathscr{S})$ a *pre-class* (2,1)-category. We call a discrete object $X \in \mathbf{Disc}(\mathcal{K})$ small if $!: X \to \mathbf{1}$ is in \mathscr{S} .

Let \mathcal{K} be an \mathscr{F}_{BO} -regular and extensive (2,1)-category, $^{\circ}:\mathcal{K}^{co}\to\mathcal{K}$ a duality involution and \mathscr{S} a class of discrete opfibrations. We call $(\mathcal{K},^{\circ},\mathscr{S})$ a $pre\text{-}class\ (2,1)\text{-}category$. We call a discrete object $X\in \mathbf{Disc}(\mathcal{K})$ small if $!:X\to \mathbf{1}$ is in \mathscr{S} .

We call a general object $\mathbb{X} \in \mathcal{K}$ *small* if there exists a small discrete object and a codescent morphism $q: X \twoheadrightarrow \mathbb{X}$, such that $(s,t): q \downarrow q \rightarrow X^{\circ} \times X$ is in \mathcal{S} .

$$\begin{array}{ccc}
q \downarrow q & \xrightarrow{s} & X \\
\downarrow t & \cong & \downarrow q \\
X & \xrightarrow{q} & X
\end{array}$$

Let \mathcal{K} be an \mathscr{F}_{BO} -regular and extensive (2,1)-category, $^{\circ}:\mathcal{K}^{co}\to\mathcal{K}$ a duality involution and \mathscr{S} a class of discrete opfibrations. We call $(\mathcal{K},^{\circ},\mathscr{S})$ a $pre\text{-}class\ (2,1)\text{-}category$. We call a discrete object $X\in \mathbf{Disc}(\mathcal{K})$ small if $!:X\to \mathbf{1}$ is in \mathscr{S} .

We call a general object $\mathbb{X} \in \mathcal{H}$ *small* if there exists a small discrete object and a codescent morphism $q: X \twoheadrightarrow \mathbb{X}$, such that $(s,t): q \downarrow q \rightarrow X^{\circ} \times X$ is in \mathscr{S} .

$$\begin{array}{ccc}
q \downarrow q & \xrightarrow{s} & X \\
\downarrow t \downarrow & \cong & \downarrow q \\
X & \xrightarrow{g} & X
\end{array}$$

Define the full sub-(2,1)-category of small objects by $\mathcal{K}_{\text{small}}$.

Let $(\mathcal{K}, {}^{\circ}, \mathcal{S})$ be a pre-class (2, 1)-category. Consider:

- Replacement.
- Stability.
- 3 $0 \rightarrow 1$ and $1 + 1 \rightarrow 1$ belong to \mathcal{S} .
- Sums.
- Quotients.
- Exponentiality.
- Representability.
- Cancellability.
- Small NNO.
- Small projectivity.
- Small exactness

Any isomorphism is in $\mathcal F$ and $\mathcal F$ is closed under composition.

Let $(\mathcal{K}, {}^{\circ}, \mathcal{S})$ be a pre-class (2, 1)-category. Consider:

- Replacement.
- Stability.
- 3 $0 \rightarrow 1$ and $1 + 1 \rightarrow 1$ belong to \mathcal{S} .
- Sums.
- Quotients.
- Exponentiality.
- Representability.
- Cancellability.
- Small NNO.
- Small projectivity.
- Small exactness

In any (2,1)-pullback square

$$\begin{array}{ccc}
A & \longrightarrow & X \\
G \downarrow & \cong & \downarrow f \\
B & \longrightarrow & Y
\end{array}$$

If $F \in \mathcal{S}$ then $G \in \mathcal{S}$.

Let $(\mathcal{K}, {}^{\circ}, \mathcal{S})$ be a pre-class (2, 1)-category. Consider:

- Replacement.
- Stability.
- 3 $0 \rightarrow 1$ and $1 + 1 \rightarrow 1$ belong to \mathcal{S} .
- Sums.
- Quotients.
- Exponentiality.
- Representability.
- Cancellability.
- Small NNO.
- Small projectivity.
- Small exactness

Let $(\mathcal{K}, {}^{\circ}, \mathcal{S})$ be a pre-class (2, 1)-category. Consider:

- Replacement.
- Stability.
- 3 $0 \rightarrow 1$ and $1 + 1 \rightarrow 1$ belong to \mathcal{S} .
- Sums.
- Quotients.
- Exponentiality.
- Representability.
- Cancellability.
- Small NNO.
- Small projectivity.
- Small exactness

If $X \to Y$ and $X' \to Y'$ belong to \mathcal{S} then so does $X + X' \to Y + Y'$.

Let $(\mathcal{K}, {}^{\circ}, \mathcal{S})$ be a pre-class (2, 1)-category. Consider:

- Replacement.
- Stability.
- Sums.
- Quotients.
- Exponentiality.
- Representability.
- Cancellability.
- Small NNO.
- Small projectivity.
- Small exactness

In any commutative diagram

where F and G are discrete opfibrations, if Q is codescent and G belongs to \mathcal{S} then so does F.

Let $(\mathcal{K}, {}^{\circ}, \mathcal{S})$ be a pre-class (2, 1)-category. Consider:

- Replacement.
- Stability.
- 3 $0 \rightarrow 1$ and $1 + 1 \rightarrow 1$ belong to \mathcal{S} .
- Sums.
- Quotients.
- Exponentiality.
- Representability.
- Cancellability.
- Small NNO.
- Small projectivity.
- Small exactness

Every map in $\mathcal S$ is exponentiable

Let $(\mathcal{K}, {}^{\circ}, \mathcal{S})$ be a pre-class (2, 1)-category. Consider:

- Replacement.
- Stability.
- 3 $0 \rightarrow 1$ and $1 + 1 \rightarrow 1$ belong to \mathcal{S} .
- Sums.
- Quotients.
- Exponentiality.
- Representability.
- Cancellability.
- Small NNO.
- Small projectivity.
- Small exactness

There exists a classifier for maps in \mathcal{S} , which is iteself in \mathcal{S} .

Let $(\mathcal{K}, {}^{\circ}, \mathcal{S})$ be a pre-class (2, 1)-category. Consider:

- Replacement.
- Stability.
- 3 $0 \rightarrow 1$ and $1 + 1 \rightarrow 1$ belong to \mathcal{S} .
- Sums.
- Quotients.
- Exponentiality.
- Representability.
- Cancellability.
- Small NNO.
- Small projectivity.
- Small exactness

Let $F: X \to Y$ and $G: Y \to Z$ be discrete opfibrations. If $GF \in \mathcal{F}$ then $F \in \mathcal{F}$.

Let $(\mathcal{K}, {}^{\circ}, \mathcal{S})$ be a pre-class (2, 1)-category. Consider:

- Replacement.
- Stability.
- 3 $0 \rightarrow 1$ and $1 + 1 \rightarrow 1$ belong to \mathcal{S} .
- Sums.
- Quotients.
- Exponentiality.
- Representability.
- Cancellability.
- Small NNO.
- Small projectivity.
- Small exactness

Let $(\mathcal{K}, {}^{\circ}, \mathcal{S})$ be a pre-class (2, 1)-category. Consider:

- Replacement.
- Stability.
- 3 $0 \rightarrow 1$ and $1 + 1 \rightarrow 1$ belong to \mathcal{S} .
- Sums.
- Quotients.
- Exponentiality.
- Representability.
- Cancellability.
- Small NNO.
- Small projectivity.
- Small exactness

Every small discrete object in \mathcal{K} is projective, i.e.

 $\mathsf{Hom}_{\mathbf{Gpd}}(X,-):\mathcal{H}\to\mathbf{Gpd}$

preserves codescent morphisms.

Let $(\mathcal{K}, {}^{\circ}, \mathcal{S})$ be a pre-class (2, 1)-category. Consider:

- Replacement.
- Stability.
- 3 $0 \rightarrow 1$ and $1 + 1 \rightarrow 1$ belong to \mathcal{S} .
- Sums.
- Quotients.
- Exponentiality.
- Representability.
- Cancellability.
- Small NNO.
- Small projectivity.
- Small exactness

Effectivity of small codescent objects/morphisms.

Let $(\mathcal{K}, {}^{\circ}, \mathcal{S})$ be a pre-class (2, 1)-category. Consider:

- Replacement.
- Stability.
- 3 $0 \rightarrow 1$ and $1 + 1 \rightarrow 1$ belong to \mathcal{S} .
- Sums.
- Quotients.
- Exponentiality.
- Representability.
- Cancellability.
- Small NNO.
- Small projectivity.
- Small exactness

Definition

If $(\mathcal{K},^{\circ}, \mathcal{S})$ satisfies 1-11, we call it a *class* (2,1)-*category.*

Examples

${\mathscr K}$	\mathscr{K}_{small}	\mathcal{S}
GPD	Gpd	Set-sized fibers

${\mathscr K}$	\mathscr{K}_{small}	\mathcal{G}
GPD	Gpd	Set-sized fibers
GPD_{μ}	Gpd_λ	λ -small fibers
•		

${\mathscr K}$	\mathcal{K}_{small}	\mathcal{G}
GPD	Gpd	Set-sized fibers
GPD_{μ}	Gpd_λ	λ -small fibers
[[representably Set -sized

${\mathscr K}$	\mathcal{K}_{small}	\mathcal{S}
GPD	Gpd	Set-sized fibers
GPD_{μ}	Gpd_λ	λ -small fibers
$[\mathscr{A}^{op},GPD]$	[ℐ ^{op} , Gpd]	representably Set -sized
ℋ a stack	\mathcal{K}_{small} a small stack	as above

${\mathscr K}$	\mathcal{K}_{small}	\mathcal{S}
GPD	Gpd	Set-sized fibers
GPD_{μ}	Gpd_λ	λ -small fibers
$[\mathscr{A}^{op},GPD]$	[ℐ ^{op} , Gpd]	representably Set -sized
${\mathcal K}$ a stack	\mathcal{K}_{small} a small stack	as above
$\mathbf{Gpd}(\mathbf{Asm}_{\mathcal{A}})$	$Gpd(Mod_{A})$	modest fibers

${\mathscr K}$	\mathcal{K}_{small}	\mathcal{S}
GPD	Gpd	Set-sized fibers
GPD_{μ}	Gpd_λ	λ -small fibers
$[\mathscr{A}^{op},GPD]$	[A ^{op} , Gpd]	representably Set -sized
${\mathcal H}$ a stack	\mathcal{K}_{small} a small stack	as above
? pGpd(Asm _A)	$pGpd(Mod_{A})$	modest fibers

${\mathscr K}$	\mathscr{K}_{small}	\mathcal{S}
GPD	Gpd	Set-sized fibers
GPD_{μ}	Gpd_λ	λ -small fibers
$[\mathscr{A}^{op},GPD]$	[ℐ ^{op} , Gpd]	representably Set -sized
${\mathcal H}$ a stack	\mathcal{K}_{small} a small stack	as above
? pGpd(Asm _A)	$pGpd(Mod_A)$	modest fibers
? $Gpd(\mathscr{C})$	$\boxed{ \mathbf{Gpd}(\mathscr{C}_{small})}$	small fibers

Outline

- Motivation
- 2 Axioms
- Properties
- Extra axioms
- 5 Future work

Let $(\mathcal{K}, \circ, \mathcal{S})$ be a class (2, 1)-category.

• for $\mathbb{X} \in \mathcal{K}_{small}$, $[\mathbb{X}, \mathbb{Y}]$ exists.

- for $\mathbb{X} \in \mathcal{K}_{small}$, $[\mathbb{X}, \mathbb{Y}]$ exists.
- $\mathcal{K}_{\text{small}}$ is cartesian closed.

- for $\mathbb{X} \in \mathcal{K}_{\text{small}}$, $[\mathbb{X}, \mathbb{Y}]$ exists.
- $\mathcal{K}_{\text{small}}$ is cartesian closed.
- there exists a small object $2 \odot 1$.

- for $\mathbb{X} \in \mathcal{K}_{small}$, $[\mathbb{X}, \mathbb{Y}]$ exists.
- \mathcal{K}_{small} is cartesian closed.
- there exists a small object 2 ⊙ 1.
- \mathcal{H}_{small} is extensive.

- for $\mathbb{X} \in \mathcal{K}_{small}$, $[\mathbb{X}, \mathbb{Y}]$ exists.
- \mathcal{K}_{small} is cartesian closed.
- there exists a small object 2 ⊙ 1.
- $\mathcal{K}_{\text{small}}$ is extensive.
- $\mathcal{K}_{\text{small}}$ is finitely (co)complete.

- for $\mathbb{X} \in \mathcal{K}_{small}$, $[\mathbb{X}, \mathbb{Y}]$ exists.
- \mathcal{K}_{small} is cartesian closed.
- there exists a small object 2 ⊙ 1.
- $\mathcal{K}_{\text{small}}$ is extensive.
- $\mathcal{K}_{\text{small}}$ is finitely (co)complete.
- There is a Yoneda lemma for \mathcal{K} (cf. (Weber, Street)).

- for $\mathbb{X} \in \mathcal{H}_{\text{small}}$, $[\mathbb{X}, \mathbb{Y}]$ exists.
- \mathcal{K}_{small} is cartesian closed.
- there exists a small object 2 ⊙ 1.
- $\mathcal{K}_{\text{small}}$ is extensive.
- \mathcal{K}_{small} is finitely (co)complete.
- There is a Yoneda lemma for \mathcal{K} (cf. (Weber, Street)).
- There is a Grothendieck construction.

Let $(\mathcal{K}, \circ, \mathcal{S})$ be a class (2, 1)-category.

Theorem

The (2,1)-category $\mathcal{K}_{small} \simeq \mathbf{Gpd}(\mathcal{E})$ for $\mathcal{E} := \mathbf{Disc}(\mathcal{K})$. Moreover, \mathcal{E} is a locally cartesian closed, extensive category with a natural numbers object.

The hard part of this follows from John Bourke's PhD thesis.

Let $(\mathcal{K}, \circ, \mathcal{S})$ be a class (2, 1)-category.

Theorem

The (2,1)-category $\mathcal{K}_{small} \simeq \mathbf{Gpd}(\mathcal{E})$ for $\mathcal{E} := \mathbf{Disc}(\mathcal{K})$. Moreover, \mathcal{E} is a locally cartesian closed, extensive category with a natural numbers object.

The hard part of this follows from John Bourke's PhD thesis.

Theorem

 \mathcal{K}_{small} is a model of MLTT. Therefore \mathcal{K} models MLTT with a univalent universe of small 0-types.

(See HoTTLEAN)

Outline

- Motivation
- 2 Axioms
- 3 Properties
- Extra axioms
- 5 Future work

Let $(\mathcal{K},^{\circ}, \mathcal{S})$ be a class (2,1)-category. Consider: Inspired by Lurie's ∞ -toposes...

ullet $\mathcal H$ has a small full subobject classifier.

Theorem

The (2,1)-category $\mathcal{K}_{small} \simeq \mathbf{Gpd}(\mathscr{E})$ for $\mathscr{E} := \mathbf{Disc}(\mathcal{K})$. Moreover, \mathscr{E} is an elementary topos.

Let $(\mathcal{K},^{\circ},\mathcal{S})$ be a class $(\mathbf{2},\mathbf{1})$ -category. Consider: Inspired by Lawvere...

- ullet ${\mathcal K}$ has a small full subobject classifier.
- \bullet \mathcal{K} is 2-well pointed.
- ullet ${\mathcal K}$ satisfies the categorified axiom of choice.

Let $(\mathcal{K},^{\circ},\mathcal{S})$ be a class (2,1)-category. Consider: Inspired by Lawvere...

- ullet ${\mathcal K}$ has a small full subobject classifier.
- \mathcal{K} is 2-well pointed.
- ullet satisfies the categorified axiom of choice.

Theorem

The (2,1)-category $\mathcal{K}_{small} \simeq \mathbf{Gpd}(\mathscr{E})$ for $\mathscr{E} := \mathbf{Disc}(\mathcal{K})$. Moreover, \mathscr{E} is a model of ETCS.

Let $(\mathcal{K},^{\circ},\mathcal{S})$ be a class (2,1)-category. Consider: Inspired by Lawvere...

- ullet ${\mathcal H}$ has a small full subobject classifier.
- \mathcal{K} is 2-well pointed.
- ullet ${\mathcal K}$ satisfies the categorified axiom of choice.

Theorem

The (2,1)-category $\mathcal{K}_{small} \simeq \mathbf{Gpd}(\mathcal{E})$ for $\mathcal{E} := \mathbf{Disc}(\mathcal{K})$. Moreover, \mathcal{E} is a model of ETCS.

Therefore, $\mathcal{K}_{\text{small}}$ has the same logical power as ETCS, which has the same logical power as ZFC without replacement.

Let $(\mathcal{K},^{\circ},\mathcal{S})$ be a class (2,1)-category. Consider: Inspired by Lawvere...

- ullet ${\mathcal H}$ has a small full subobject classifier.
- \mathcal{K} is 2-well pointed.
- ullet satisfies the categorified axiom of choice.

Theorem

The (2,1)-category $\mathcal{K}_{small} \simeq \mathbf{Gpd}(\mathscr{E})$ for $\mathscr{E} := \mathbf{Disc}(\mathcal{K})$. Moreover, \mathscr{E} is a model of ETCS.

Therefore, $\mathcal{K}_{\text{small}}$ has the same logical power as ETCS, which has the same logical power as ZFC without replacement.

Therefore, \mathcal{K} has the same logical power as ZFC.

Outline

- Motivation
- 2 Axioms
- 3 Properties
- Extra axioms
- 5 Future work

More algebraic set theory.

- More algebraic set theory.
- Removing the duality involution.

- More algebraic set theory.
- Removing the duality involution.
- Considering **Gpd**(**Asm**_A)...

- More algebraic set theory.
- Removing the duality involution.
- Considering Gpd(Asm_A)...
- Optimising the axioms.

- More algebraic set theory.
- Removing the duality involution.
- Considering Gpd(Asm_A)...
- Optimising the axioms.
- Stability under (op)fibrational slicing.

- More algebraic set theory.
- Removing the duality involution.
- Considering Gpd(Asm_A)...
- Optimising the axioms.
- Stability under (op)fibrational slicing.
- Comparison to Joseph Helfer's 2-toposes \(\simplies \) the classifier is an "internal 1-topos".

Summary

	1-cats	(2, 1)-cats
Object	class categories	class (2, 1)-categories
internal logic	small obs: 0D MLTT	small obs: 1D MLTT
Key example	Class	GPD

Adding axioms to a class (2,1)-category, we can give an (2,1)-categorical description of a logic which is as powerful as ZFC.

References I

- John Bourke, Codescent objects in 2-dimensional universal algebra, PhD thesis, University of Sydney 2010.
- John Bourke and Richard Garner, Two-dimensional regularity and exactness, Journal of Pure and Applied Algebra, 218 (7), pp. 1346–1371, 2014.
- Calum Hughes and Adrian Miranda, The elementary theory of the 2-category of small categories, Theory and Applications of Categories, Vol. 43, 2025, No. 8, pp 196-242.
- Calum Hughes and Adrian Miranda, Colimits of internal categories, preprint, 2025.
- Calum Hughes, The algebraic internal groupoidal model of type theory, preprint, 2025.

References II

- Andrè Joyal, leke Moerdijk, Algebraic set theory, Vol. 220. Cambridge University Press, 1995.
- Algebraic set theory library: https://www.phil.cmu.edu/projects/ast/