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1. Introduction

Algebraic topology is one of the main areas of modern pure mathematical research, but
has also recently found broader applications to the fields of data science [Car09], quantum
mechanics [VR19, BV14] and computing [Zom05] due to its ability to solve problems in
high dimensions without the need to visualise it.

It was invented to study structure and continuity; a topological space can be thought
of as a generalisation of a subset of Rn, and we can ask if two topological spaces are
structurally the same by asking if there is a continuous bijection between them with
continuous inverse. Such a map is called a homeomorphism. Just as in set theory, in
which we only really care about sets up to bijection, and in group theory, in which we
only really care about groups up to isomorphism, we only really care about topological
spaces up to homeomorphism. One of the main goals of algebraic topology is to assign
an algebraic object (a sequence of groups for example) to a topological space in some
way that is invariant under homeomorphism; therefore, we can tell if two spaces are not
homeomorphic if the invariant for the spaces is different.

Figure 1. A homeomorphism. This is intuitively continuous, bijective
and with continuous inverse.

Broadly speaking, algebraic topology splits naturally into two branches: homology and
homotopy [Hat01]. As such, it is important to understand how these two relate. The
Dold-Kan correspondence is a theorem which establishes a link between these two areas
by showing that certain algebraic objects used to study homology are equivalent in some
sense to algebraic objects that are used to study homotopy theory. It does this by showing
that there is an equivalence of categories between the category of simplicial abelian groups
and the category of non-negatively graded chain complexes of abelian groups. In order
to understand the Dold-Kan correspondence, then, we must introduce the language of
category theory; this is the content of section 2.

Homotopy theory was originally invented to study a topological space by trying to
understand maps into this space, from which structural elements can be extracted. One
approach to this theory is to translate the space into a simplicial set, which is a purely
combinatorial object that is meant to have similar geometric properties to n-dimensional
tetrahedra, which we call topological n-simplices. From a homotopical point of view, a
particularly nice type of simplicial set is a Kan complex ; in order to ensure we are working
with these, we restrict our attention to simplicial abelian groups. The motivation and
details of this are given in section 3.

Homology was invented in the late 1800s in order to study n-dimensional holes in
spaces [Wei95]. One approach to this theory is singular homology, in which we translate
from topological spaces to abelian groups by considering linear combinations of maps from
topological n-simplices into a space X, and form the topological boundary map between
each dimension. By studying the image and kernel of this map, we can form the nth
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homology group Hn(X), which is an invariant for the space and, moreover, tells us the
number of n-dimensional holes in the space. In order to make this rigorous and more
general, we introduce non-negatively graded chain complexes, which abstractly capture
this idea. More information about these tools is given in section 4.

The Dold-Kan correspondence gives a way of turning a non-negatively graded chain
complex into a simplicial abelian group and vice-versa. It is perhaps surprising that these
two tools are equivalent, as naively it seems as though simplicial abelian groups have more
complexity to them than non-negatively graded chain complexes. Indeed, historically,
homotopy theory has been less well understood than homology. As a result of the Dold-
Kan correspondence, mathematicians have been able to advance homotopy theory by a
great deal using homological methods ([GJ99], section III.2 for example). However, there
have recently been a lot of advances in homotopy theory due to the development of areas of
study such as ∞-category theory [RV22], and categorical homotopy theory [Rie14]. Due to
Dold-Kan, these developments can be used to study homological algebra, and have solved
many problems in the area ([Wei95], chapter 8).

The Dold-Kan correspondence is named as such due to it being independently discovered
by Albrecht Dold and Daniel Kan in 1958 [Dol58, Kan58]. We present a proof of the abelian
group version of the correspondence in section 5. In 1961, Dold and Puppe proved a
generalisation of the correspondence to the setting of abelian categories [DP61]. Examples
of abelian categories include the category of abelian groups, the category of R-modules
and the category of vector spaces, but we restrict our attention in this project to abelian
groups due to the background required to explain and motivate more general setting in
detail.

In 1967, in order to study homotopy theory in a more abstract setting, Daniel Quillen
introduced model categories and a kind of equivalence between these called a Quillen
equivalence, which preserves all homotopical relations [Qui67]. In section 6, we upgrade
the Dold-Kan correspondence to a Quillen equivalence.

In section 7, we explain some extensions of the Dold-Kan correspondence to more general
settings and give concluding remarks.

This project is intended to be an intuitive and self-contained introduction to the Dold-
Kan correspondence and the motivation behind it. Due to the background theory needed to
motivate this topic, and the diagrams, figures and display mathematics needed to explain
the content properly, this project is longer than the 40 page limit. The writer believes
a shorter project would have negatively impacted either the clarity or the completeness
of explanations. Topological spaces and homeomorphism are not formally introduced due
to space constraints, but are used as an intuitive and motivating example throughout; no
technical details are needed.

This project provides more direct and explicit proofs of the Dold-Kan correspondence
and the associated Quillen equivalence than is found in the literature; as it is aimed at
fourth year students who are not necessarily comfortable with category theoretic reasoning,
a lot of the machinery used in the proofs in [Wei95] and [GJ99] for example would require
too much background. Moreover, subsection 5.2 gives a much more detailed explanation
of the functor K than is usually given, including diagrams and examples of how it acts
in low dimensions. The proof of the Quillen equivalence (theorem 6.35) is notably much
more direct than that found in [GJ99], for example. Most proofs and examples are the
authors own; references are given when a proof has been influenced by the literature.

2. Category Theory

Category theory was invented in the 1940s by Eilenberg and Mac Lane in order to
study homological algebra, but with the goal of understanding mathematical structure
more generally [ML63]. As such, it is quite abstract—indeed it has been referred to,
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often jokingly, as “abstract nonsense” ([Lan02], p.175). In many ways, it is like learning
a new language that has its own ‘nouns’ and ‘verbs’ [Rie17]; it has many descriptive
definitions in it which allow us to be very expressive and compact with our descriptions of
mathematical objects. Whilst learning this language does not require any prerequisites,
it formalises mathematical ways of thinking making it applicable to a whole variety of
different areas within mathematics.

One example of this is that a category theorist treats the concepts of bijections, group
isomorphisms and homeomorphisms between spaces identically. We give one definition for
an isomorphism in an arbitrary category, and then by specifying that we are working in
the category of Set, Group or Top (the categories of sets, groups or topological spaces
respectively), and unravelling the definition, we obtain a bijection, a group isomorphism or
a homeomorphism. This shows how category theory is useful for packaging up information
with the power to understand concepts in different contexts.

Category theory takes the standpoint of understanding an object not by looking at the
object itself, but instead by trying to understand maps into and out of the object [FS19].
Despite being invented as a tool for use in algebraic topology, and being highly useful in the
area [Rie14], modern research in category theory has applications outsider this, including
work on control systems theory [Mye22], analysis [Law73], ecology [Lei21], algebra [Alu21]
and is becoming increasingly important to logic with the development of the new field of
Homotopy Type Theory [Uni13]. A lot of modern computing languages are written in a
category theoretic way, such as the language Haskell [Mil18].

2.1. Categories. This chapter explains the category theory necessary to prove the Dold-
Kan correspondence; for a more complete introduction to category theory, the reader is
referred to [Rie17].

Definition 2.1. A category C, consists of
• A class of objects, X,Y, Z denoted ob(C).
• A class of morphisms f, g, h between objects, denoted mor(C). For the class of
morphisms between two objects X and Y , we write HomC(X,Y ).

such that:

• Amorphism has specified domain and codomain in ob(C). The notation f : X → Y
means that the domain and codomain of f is X and Y respectively.

• For any X ∈ ob(C), there exists an identity morphism 1X : X → X.
• For any pair of morphisms f : X → Y and g : Y → Z, there exists a composite
morphism g ◦ f : X → Z. We sometimes write gf when it is clear that this is a
composition.

The morphisms must follow the following composition rules:

• For any f : X → Y we have 1Xf = f = f1Y .
• For any composable triple f : X → Y , g : Y → Z, h : Z →W we have

h(gf) = (hg)f.

We therefore forget brackets and write hgf : X →W . This is called the associative
property.

A lot of this notation will probably be very familiar to the reader, and suggests the
notion of sets and functions, or groups and group homomorphisms. We show that a
category does indeed generalise these notions.

Example 2.2. The category Set, has:

• Sets A,B,C as its objects.
• Functions f, g, h as its morphisms.
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There exists an identity function on any set— for any set A, we define a function
idA : A → A given by idA(a) = a for all a ∈ A. For the functions f : A → B, g : B → C
and h : C → D we can certainly form composite function g ◦ f : A → B and this
composition is associative: (h ◦ g) ◦ f = h ◦ (g ◦ f) = h ◦ g ◦ f , as proven in [Rod00].
Moreover, it is trivial to see that IdA ◦ f = f = f ◦ IdB. Therefore, we see that Set is a
category.

Example 2.3. The category Group, has:

• Groups as as its objects.
• Group homomorphisms as its morphisms.

It is not difficult to check that this satisfies the axioms.

Remark 2.4. We can define the categories Ring, Field, VectK similarly to Group, but
replacing homomorphism of groups with the correct homomorphism respective to the type
of objects.

Example 2.5. The category Top, has:

• Topological spaces as as its objects.
• Continuous maps as its morphisms.

These next examples are important categories in this project.

Example 2.6. The category Ab, has:

• Abelian groups as as its objects.
• Group homomorphisms between abelian groups as its morphisms.

Example 2.7. Let ∆ be the category which has:

• Finite, non-empty, totally ordered sets as objects. By this, we mean sets of the
form {a0 ≤ a2 ≤ a3 ≤ ...}. We write [n] = {0, 1, 2, ..., n}.

• Order-preserving functions as morphisms. That is, functions α : A → B with
ai ≤ aj in A =⇒ α(ai) ≤ α(aj) in B.

Since identities are order-preserving, and the composition of two order-preserving func-
tions is also order-preserving, it is not hard to check that this is a well-defined category.

We have the following properties of morphisms in the category ∆, which will be used
many times in later sections.

Definition 2.8. For each 0 ≤ i ≤ n, we define ϵi : [n] → [n+1] to be the unique injective
map in ∆ so that its image misses out the ith entry:

ϵi(j) =

{
j if j < i

j + 1 if j ≥ i.

We define ηi : [n + 1] → [n] to be the unique surjective map in ∆ such that it has two
elements mapping to i:

ηi(j) =

{
j if j ≤ i

j − 1 if j > i.

Example 2.9. The image of [2] under ϵ2 : [2] → [3] is given by ϵ2([2]) = {0, 1, 3} ⊆ [3].

Remark 2.10. It might be more appropriate to label these maps as ϵni and ηni to make

these distinct from ϵn−1
i and ηn−1

i , for example. However, it is usually obvious what the
codomain is, and this avoids the over-use of superscripts.

Lemma 2.11. We have the following identities in ∆:

(1) ϵjϵi = ϵiϵj−1 if i < j,
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(2) ηjηi = ηiηj+1 if i < j,

(3) ηjϵi =


ϵiηj−1 if i < j,

1[n] if i ∈ {j, j + 1},
ϵi−1ηj if i > j + 1.

Proof. Let 0 ≤ i < j ≤ n. We prove (1); the proofs of (2) and (3) follow a similar line of
argument. If k < i, then k < j so ϵjϵi(k) = k. If k > i then ϵi(k) = k + 1 and we have
two situations that could occur: k + 1 < j, in which case ϵj(k + 1) = k + 1, or k + 1 > j,
in which case ϵj(k + 1) = k + 2. Together, we have:

ϵjϵi(k) =


k if k < i,

k + 1 if i ≤ k + 1 < j,

k + 2 if k + 1 ≥ j.

Similarly, if k ≥ j − 1, then k + 1 ≥ j > i, so ϵiϵj−1(k) = k + 2. If k < j − 1 then, again,
we get two scenarios: k < i, in which case ϵiϵj−1(k) = k and i ≤ k < j − 1, in which case
ϵiϵj−1(k) = k + 1. Together, we have:

ϵiϵj−1(k) =


k if k < i,

k + 1 if i ≤ k < j − 1 =⇒ i ≤ k + 1 < j

k + 2 if k ≥ j − 1 =⇒ k + 1 ≥ j.

Therefore, these maps are equal.
□

Lemma 2.12. Let α be a morphism in ∆. Then there is a unique epi-monic factorisation
of α = ϵη where ϵ is an epimorphism which is the unique combinations of the ϵi:

ϵ = ϵi1 ...ϵis with 0 ≤ is ≤ ... ≤ i1 ≤ m

and η is a monomorphism which is the unique composition of the ηi:

η = ηj1 ...ηjt , with 0 ≤ j1 ≤ ... < jt < n.

Proof. Let α : [n] → [m]. An order-preserving function between ordered sets is fully
determined by its image and by the set of numbers in [n] which do not increase, i.e.
α(j) = α(j + 1). The image of α can be written as a list of numbers v0 ≤ ... ≤ vm with
some of {0, 1, 2, ...,m} possibly missing or repeating. Let i1 < ... < is be the missing
numbers, and j1 < ... < jt be the numbers such that α(j) = α(j + 1). We note that
n+1 = m+1−s+t as we start with n+1 numbers in the domain, these are sent tom+1−s
distinct numbers in [m], but t of these are repeats that make up the rest of the required
list size. Set p = m−s = n− t. Then η = ηj1 ...ηjt : [n]↠ [p] is an epimorphism as it is the
composition of epimorphisms (lemma 2.18), and has η(jr) = η(jr+1) for j1 < j2 < ... < jt
by definition of ηj . Moreover, ϵ = ϵi1 ...ϵis : [p] ↪→ [m] is a monomorphism as it is the
composition of monomorphisms and it misses out the numbers 0 ≤ is ≤ ... ≤ i1 by
definition of ϵi. Hence α = ϵη. Uniqueness follows from specifying the ordering of the iks
and jls. □

Therefore we can see that the ϵis and ηis generate all morphisms of ∆.

2.1.1. Duality and The Opposite Category. In linear algebra, we can prove propositions
about a finite-dimensional vector space V by proving things about the dual vector space
V ∗, which is isomorphic to V and has (V ∗)∗ = V . We have a similar notion in category
theory; to obtain this dual, we can consider morphisms as arrows and imagine reversing
the directions of all the arrows.

Definition 2.13. Let C be a category. The opposite category, denoted Cop has:
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• The same objects as C.
• For every morphism f : X → Y in C, a morphism fop : Y → X in Cop.

For any composable morphisms f : X → Y , g : Y → Z in C, by defining fop◦gop = (g◦f)op,
we have a composition in Cop and it is clear that we can that 1opX = 1X for all X. The
other axioms follow from the structure of C. Hence Cop is a well-defined category.

Remark 2.14. For any category C, we have (Cop)op = C.

Any statement about a category C has a dual statement about the category Cop; any
proof in category theory simultaneously proves both a proposition and its dual.

2.1.2. Types of Morphisms. The philosophy behind category theory is to look at mor-
phisms rather than objects themselves. As such, it makes sense that we should have some
words describing kinds of morphisms.

Definition 2.15. A morphism f : X → Y in a category C is called:

• A monomorphism if for any two morphisms h, k : W → X, fh = fk implies that
h = k.

• An epimorphism if for any two morphisms h, k : Y → Z, hf = kf implies that
h = k.

We call monomorphismsmonic and epimorphisms epi. We sometimes use decorated arrows
f : X ↣ Y to denote that f is a monomorphism and f : X ↠ Y to denote that f is an
epimorphism. Monomorphisms are the dual notion to epimorphisms.

Example 2.16. A morphism in Set is a monomorphism if and only if it is an injective
function. Let f : X → Y be a monomorphism and consider x, x′ : 1 → X, where 1 denotes
a set with a single element. Then fx = fx′ =⇒ x = x′ as f is monic. Hence by the
one-to-one correspondence between elements x ∈ X and maps x : 1 → X, we see that f
is injective. Conversely, if f is an injective function, then for any h, k : W → X, we have
fh = fk =⇒ f(h(w)) = f(k(w)) for all w ∈ W . Since f is injective, this implies that
h(w) = k(w) for all w ∈W , which is exactly saying h = k Hence f is monic.

Example 2.17. A morphism in Set is an epimorphism if and only if it is a surjective
function. The condition hf = kf means that h(f(x)) = k(f(x)) for all x ∈ X. This only
implies that h = k if img(f) = Y .

Lemma 2.18. The composition of two monomorphisms is again a monomorphism. Du-
ally, the composition of two epimorphisms is again an epimorphism.

Proof. Let g : W → X and f : X → Y be monic. Then, for h, k : Y → Z, we show that
if (fg)h = (fg)k this implies h = k. By associativity, we know f(gh) = f(gk). As f is
monic, this implies that gh = gk, but since g is also monic, this implies that h = k, as
required.

The proof for epimorphisms is similar. □

Definition 2.19. Let f : X → Y be a morphism in some category. A section of f is a
morphism g : Y → X such that fg = 1Y .

If a section of f exists, then it is clear that f is an epimorphism by applying the right-
sided inverse to both sides of hf = kf . To acknowledge the existence of a section, we say
that f is a split epimorphism.

Lemma 2.20. In ∆, every epimorphism η : [n]↠ [p] is a split epimorphism, and so there
exists a section ρ : [p]↣ [n] with ρη = 1[n].

Proof. For ηi : [n] → [n− 1], a right sided inverse is given by ϵi; by lemma 2.11, we have
ηiϵi = id. Now, any other surjection is the composition of the ηi maps— for η = ηi1 ...ηit ,
the right sided inverse is ϵit ...ϵi1 . □
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Definition 2.21. An isomorphism is morphism f : X → Y such that there exists a
morphism g : Y → X with gf = 1Y and fg = 1X . We sometimes use the decorated

arrow f : X Y∼ to denote that f is an isomorphism. If f : X Y,∼ then we say X

is isomorphic to Y .

We can see this agrees with our previous notions of isomorphisms but shifts the focus
of the definitions away from the objects and onto the morphisms.

Example 2.22. An isomorphism in Set is exactly the statement that two sets are in
bijection with one another.

Example 2.23. An isomorphism in Group is exactly the statement that two groups are
isomorphic.

Example 2.24. An isomorphism in Top is a homeomorphism.

Lemma 2.25. A morphism in Ab is an isomorphism iff it is both epi and monic.

Proof. A homomorphism of abelian groups f is an isomorphism if and only if it is injective
and surjective. But inAb, f is injective and surjective if and only if it is epi and monic. □

This not always the case, as is exemplified in this example from [Rie17].

Example 2.26. The inclusion Z ↪→ Q given by is both epi and monic in the category
Ring. However, it is clear that Z is not isomorphic to Q.

2.2. Functors. We can take one step backwards and consider the category of categories.
However, this causes a problem similar to that of Russel’s paradox [Rie17]. In order to
solve this, we call a category locally small if HomC(X,Y ) is a set for all objects X and Y
in C.

Example 2.27. There is a category CAT, of locally small categories. Its objects are
locally small categories, and its morphisms are what we call functors. ([Rie17], 1.3.13)

A functor is a structure-preserving morphism between categories. The structure it
preserves is domains, codomains, composition and identities.

Definition 2.28. Let C and D be categories. A functor is a map from F : C → D defined
by:

• For every object X ∈ ob(C) an object F (X) ∈ ob(D).
• For every morphism f : X → Y ∈ mor(C), a morphism Ff : FX → FY ∈ mor(D).

These must be defined in a way that satisfies the functoriality axioms:

(F1) For every composable pair f, g ∈Mor(C), we have F (gf) = F (g)F (f).
(F2) For each object X ∈ ob(C), F (1X) = 1FX .

We will often drop the brackets to aid reading clarity, for example writing FX instead
of F (X).

Example 2.29. Let C be a category. Then there is a functor called the identity functor
on C, denoted 1C that on objects X in C has 1C(X) = X and on morphisms f in C has
1C(f) = f . This trivially satisfies the functoriality axioms. As a result, any inclusion of a
category into another category is a functor.

Functors allow us to move between categories.

Example 2.30. The forgetful functor U : Ab → Set sends any abelian group to its
underlying set.
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2.2.1. Covariant and Contravariant functors. Functors how we have defined them are also
called covariant functors. There is another flavour of functor:

Definition 2.31. Let C and D be categories. A contravariant functor is a map from
F : C → D defined by:

• For every object X ∈ ob(C) an object FX ∈ ob(D).
• For every morphism f : X → Y ∈ mor(C), a morphism Ff : FY → FX ∈ mor(D).

This must be defined such that they satisfy the cofunctoriality axioms:

(CF1) For every composable pair of morphisms f, g ∈ mor(C), we have F (gf) = F (f)F (g).
(CF2) For each object X ∈ ob(C), F (1X) = 1FX .

Note that this is the same data as a covariant functor, but with arrows reversed by the
functor. This causes the change to the order of composition seen in the difference between
(CF1) and (F1). As such, it makes sense to view this as a covariant functor from the dual
category.

Example 2.32. Let C be a category. There is a contravariant functor (−)op : C → Cop,
which does nothing on objects and for f : X → Y , fop : Y → X. By the definition of the
opposite category and how composition and identities were defined, it is clear that (−)op

is a contravariant functor.

Lemma 2.33. A contravariant functor F : C → D is the same as a covariant functor
F op : Cop → D.

Proof. Compose the contravariant functor (−)op : Cop → C with the contravariant functor
F : C → D to get a map F op : Cop → D. This swaps around the arrows and direction of
composition again to make F op covariant. □

2.2.2. Diagrams in Category Theory. An incredibly important method of proof in category
theory is “the art of the diagram chase” ([Rie17], 1.6). This method allows for arguments
to be well-organised and visually clear, rather than tedious and verbose.

Definition 2.34. A diagram in a category C is a functor F : J → C such that J is a
small category.

This is the formal definition, but we depict this graphically with arrows between nodes.

Example 2.35. The empty diagram is a diagram indexed by the category with no objects
and no morphisms— this is called the empty category.

Example 2.36. Let f : X → Y be a morphism in a category C. Then, by considering
the category J which has ob(J ) = {X,Y } and mor(J ) = {f, 1X , 1Y }, then we have a
diagram given by the inclusion functor J ↪→ C. This satisfies the formal definition of a

diagram, but graphically this looks like X Y.
f

Definition 2.37. A diagram is said to commute if any morphisms in the diagram with
the same domain and codomain are equal.

Example 2.38. Let f : X → Y , g : Y → Z, h : Z → W be morphisms in some category.
Then by the associativity axiom for categories, we must have that h(gf) = (hg)f . Another
way to say this is that the diagram:

X Z

Y W

f

gf

h

hg

commutes.
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Lemma 2.39. Suppose we have a pair of composable commutative diagrams:

X Y

U V

f

a

k

g

Y Z

V W

k

b

c

h

Then the diagram:

X Y Z

U V W

f

a

k

b

c

g h

commutes too.

Proof. The only morphisms where this might not be the case are morphisms from X to
W . However, in this case cba = (cb)a = (hk)a = h(ka) = hgf and so the diagram
commutes. □

Remark 2.40. Note that the above proof relied heavily on the associativity of composition
of morphisms. Indeed, the reason that we can express things in terms of diagrams at all
is equivalent to the fact that we have associativity.

Lemma 2.41. Functors preserve commutative diagrams.

Proof. Let F : J → C be a commutative diagram and suppose we have a functor G :
C → D. Then we can form GF : J → D; this is clearly a diagram in D, and preserves
relationships in the original diagram by functoriality, so is commutative. □

Definition 2.42. Let F : J → C be a diagram. A cone to F is an object M of C together
with a family of morphisms ψX :M → FX indexed by objects X in J such that for any
morphism f : X → Y in J , we have Ff ◦ ψX = ψY . Another way to say this is there
exists morphisms ψX , ψY for all objects X,Y and morphisms f : X → Y in J such that
the following diagram commutes.

M

FX FY

ψX ψY

Ff

We use the notation (M,ψ) to denote a cone to F .

Definition 2.43. The limit of the diagram F is a cone (L, ϕ) to F such that for any other
cone (M,ψ) to F , there exists a unique morphism u : M → L such that ϕX ◦ u = ψX for
all X ∈ ob(J ).

The dual notions of these are cocones and colimits.

Remark 2.44. We can package definition 2.43 in the following digram, where ∃!u and the
dotted arrow indicate that in this scenario there exists a unique u that makes the diagram
commute.

M

L

FX FY

ψYψX
∃!u

ϕX ϕY

Ff
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This kind of construction is common in category theory, and is called a universal prop-
erty.

Example 2.45. Let C be a category. A terminal object is the limit over the empty diagram
(when this exists). That is, it is an object 1 in C such that for any object X in C, there
is a unique morphism X → 1.

Similarly, an initial object is the colimit over the empty diagram (when this exists); it
is an object 0 in C such that for any other object X there is a unique morphism 0 → X.

Both of these are unique up to isomorphism, and so we can talk about the initial/terminal
object of a category.

Note that limits do not always exist in categories; however, it is a nice property if they
do.

Definition 2.46. Let C be a category. We say C is complete if every diagram in C has a
limit in C.

Dually, we say C is cocomplete if every diagram in C has a colimit in C.

2.2.3. Natural Transformations. We can also define a notion of morphism between func-
tors.

Definition 2.47. Let F,G : C → D be functors. A natural transformation α : F ⇒ G
consists of a morphism αX : FX → GX in D for each object X in C such that for any
morphism f : X → Y in C, the following diagram commutes in D.

FX GX

FY GY

αX

Ff Gf

αY

If αX is an isomorphism for every X, we call this a natural isomorphism

Example 2.48. Let C,D be categories and F : C → D be a functor. We can define a
natural transformation 1F : F ⇒ F for each object X in C by 1FX

= 1F (X). From the
functoriality axioms, it is clear that the following diagram commutes.

FX FX

FY FY

1FX

Ff Ff

1FY

Hence, any functor is naturally isomorphic to itself.

Since we have morphisms between functors, we can now define a category of functors.

Definition 2.49. Let C and D be categories. The functor category, denoted Func(C,D)
has:

• Functors C → D as objects.
• Natural transformations as morphisms.

The previous example gives the identity morphisms. For α : F ⇒ G and β : G ⇒ H,
the composite determines a natural transformation with (β ◦ α)X = βX ◦ αX . By gluing
together the commutative diagrams it is clear that β ◦ α is a natural transformation.
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FX GX

FY GY

αX

Ff Gf

αY

GX HX

GY HY

βX

Gf Hf

βY

⇝
FX GX HX

FY GY HY

αX

Ff

(β◦α)X

βX

Gf Hf

αY

(β◦α)Y

βY

Example 2.50. The functor category Func(∆op,Ab) will be extremely useful later.

2.3. Equivalence of Categories. Natural isomorphisms are precisely the isomorphisms
in Func(C,D). Therefore, it makes sense to only care about functors up to natural iso-
morphism. Now, if we consider a functor F : C → C that is naturally isomorphic to the
identity functor 1C , then this map has shuffled the objects and morphisms around a little
bit, but we can always use the inverse natural isomorphism to un-shuffle it. As such, it
has not changed the structure of the category in a meaningful way. This idea motivates
the concept of an equivalence of categories.

Definition 2.51. Let C and D be categories. An equivalence of categories consists of
functors

F : C D : G

such that GF is naturally isomorphic to 1C and FG is naturally isomorphic to 1D.

Remark 2.52. This is a slightly weaker definition than an isomorphism of categories,
which would require us to have GF = 1C and FG = 1D— an example of such an isomor-
phism is given by the (−)op functor. This condition would be unreasonably strict [Lei14].
However, an equivalence of categories says that GF is isomorphic to 1C in Func(C, C) and
FG is isomorphic to 1D in Func(D,D).

3. Simplicial Abelian Groups

3.1. Introduction. Homotopy theory was first designed as a way of understanding a
topological space by identifying paths in the space that could be continuously deformed
into each other. Roughly speaking, holes can be detected by homotopical information.

ab

X

Figure 2. Looking at paths from a to b in X. Paths on the top half of
the hole can be continuously morphed into one another, but cannot be
continuously morphed into any path below the hole.

One approach to understanding the homotopical structure of topological spaces is
through the use of simplices. The idea is to study the properties of a topological space by
‘breaking it up’ in some sense into n-dimensional triangles, and then examining how these
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fit back together to make the whole space. We can then turn the n-dimensional triangles
into ordered lists of integers, in order to obtain a purely combinatorial model of the space
called a simplicial set. This correspondence may seem like a loose analogy, but is actu-
ally made incredibly precise by showing that the homotopical data of a topological space
is exactly the same as the homotopical data of a simplicial set. This is expanded upon
insection 6, but not proved this in this project, as it would be a diversion from the main
topic of this project; the interested reader is instead recommended [GJ99] or [May67].

3.2. Simplices.

3.2.1. Whence Triangles? Historically, simplices have not always been the way in which
algebraic topologists break up spaces; instead of triangles, we could break up spaces into
n-dimensional circles (leading to the concept of CW complexes) or n-dimensional squares
(leading to the concept of cubical sets) for example.

Indeed, the concept of cell complexes has been used to prove many results in alge-
braic topology [Hat01]. One problem with these is that they are not closed under taking
boundaries: the boundary of a sphere is not a finite collection of circles for example. This
problem is not shared with simplices: the boundary of a tetrahedron really is 4 triangles.
This is important as for homology, we need to be able to take boundaries.

Cubical sets were originally used by Daniel Kan to study homotopy theory, but it was
realised that cubical abelian groups are not automatically fibrant, there is no notion of a
normalised chain complex of a cubical set and there is an issue in formulating a geometric
realisation formula for cubical sets. None of these problems are shared with simplicial
sets, as was proven in [ML63] and [Kan58]. Cubical sets have, however, found recent
uses in type theory, for example in [BCH14]. Moreover, in ([SHB11], chapter 14, section
8), Brown et al. provide a cubical version of the Dold-Kan correspondence. However,
this is slightly less straightforward than the version for simplicial sets; it is not that the
category of cubical abelian groups is equivalent to the category of non-negatively graded
chain complexes of abelian groups, but rather that the category of cubical abelian groups
with connections is. In ([SHB11], Remark 14.8.3), they cite this as another reason for
abandoning the use of cubical sets in favour of simplicial sets. Therefore we use simplicial
sets as they have the desired properties that make calculations and proofs most elegant in
this context.

3.2.2. Topological Simplices. In order to motivate simplicial sets, it is useful to understand
the topological origins of simplicial theory. This approach is inspired by [Fri12]. We begin
by giving the definition of the topological n-simplex:

Definition 3.1. We define the topological n-simplex by

∆n =

{
(t0, ..., tn) ∈ Rn+1 : ti ≥ 0 for each 0 ≤ i ≤ n and

n∑
i=1

ti = 1

}
Example 3.2. We unravel this definition to show that it produces n-dimensional ana-
logues of triangles.

• The topological 0-simplex is ∆0 = {(t0) ∈ R : t0 ≥ 0 and t0 = 1} = {1}.

0 1 2 3

• The topological 1-simplex is ∆1 =
{
(t0, t1) ∈ R2 : t0, t1 ≥ 0 and t0 + t1 = 1

}
. So it

the straight line from (0, 1) to (1, 0). We often associate it with the interval [0, 1];
we can do this by defining a homeomorphism f : [0, 1] → ∆1 by f(t) = (t, 1− t).
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0 1 2
0

1

2

• The topological 2-simplex is

∆2 =
{
(t0, t1, t2) ∈ R3 : t0, t1, t2 ≥ 0 and t0 + t1 + t2 = 1

}
.

It a triangle with vertices (0, 0, 1), (0, 1, 0) and (1, 0, 0).

(0, 0, 1)

(0, 0, 0)

(0, 1, 0)

(1, 0, 0)

x

y

z

We often visualise this in 2 dimensions.
• The topological 3-simplex is

∆3 =
{
(t0, t1, t2, t3) ∈ R4 : t0, t1, t2, t3 ≥ 0 and t0 + t1 + t2 + t3 = 1

}
.

Whereas we cannot visualise this in R4, we visualise this in 3 dimensions as a
tetrahedron.

We want to move on to thinking about multiple simplices fitting together in some way.
If we wanted to ‘glue’ two triangles together, we would need to specify which edges are
attached. Hence we need a way of talking about the faces of a simplex.

Definition 3.3. For 0 ≤ i ≤ n− 1, We define δi : ∆n−1 → ∆n by

δi(t0, t1, ..., tn−1) = (t0, ..., ti−1, 0, ti, ..., tn−1).

This is the inclusion of the (n− 1)-simplex into the ith face of the n-simplex.

Example 3.4. In Figure 3, we show how the maps δi act on ∆1 and ∆2. For example
δ0(∆1) = {(0, t0, t1) : t0, t1 ≥ 0 and t0 + t1 = 0} and so is the straight line from (0, 1, 0) to
(0, 0, 1) in the (y, z) plane.
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v2

v0 v1

δ0(∆1)

v2

v0 v1

δ1(∆1)

v2

v0 v1

δ2(∆1)

v3

v0

v2

v1

δ0(∆2)

Figure 3. The image of the map δi is shown in pink.

Lemma 3.5. For 0 ≤ i < j ≤ n, we have δjδi = δiδj−1 : ∆n−2 → ∆n.

Proof. Consider the point t = (t0, ..., tn−2) ∈ ∆n−2. Now, δi(t) inserts a 0 in the ith
position, and since i < j when we form δjδi(t), by adding a 0 in the jth position, this
does not move the first 0, so we have 0 in positions i and j.

On the other hand, δj−1(t) has 0 in position j − 1. As i ≤ j − 1, forming δiδj−1(t) by
adding a 0 in the ith position shifts up the other 0 by one place, causing it to be in the
jth position, as required. (Proof inspired by [Str21], section 10) □

We also have maps going the other way:

Definition 3.6. For 0 ≤ i ≤ n, We define si : ∆n → ∆n−1 by

si(t0, t1, ..., tn) = (t0, ..., ti−1, ti + ti+1, ti+2, ..., tn−1).

This is the projection of the topological n-simplex onto the (n− 1)-simplex.

Example 3.7. The map s1 : ∆2 → ∆1 is defined by s1(t0, t1, t2) = (t0, t1 + t2) and can
be visualised with Figure 4.

X

v2

v0 v1

v0 v1, v2

Figure 4. The map s1 : ∆2 → ∆1.

These maps satisfy the following relations.

Lemma 3.8. The si and δi satisfy the following relations:

(1) sjsi = sisj+1 if i ≤ j.

(2) sjδi =


δisj−1 if i < j

1∆n if i ∈ {j, j + 1}
δi−1sj if i > j + 1.
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Proof. (1) si(t1, ..., tn) has ti+ti+1 in the ith position and shifts tj+1 so that it is in the
jth position. Applying sj then has tj+1 + tj+2 in the jth position. Equivalently,
sj+1(t0, ..., tn) has tj+1 + tj+2 in the (j +1)th position and ti in the ith. Applying
si to this gives ti + ti+1 in the ith position and tj+1 + tj+2 in the jth, as required.

(2) These all follow a similar line of reasoning; for example sjδj(t0, ..., tn) first inserts a
zero in the jth position, shifting tj to the (j+1)th position and then combines the
jth and (j + 1)th places to give tj in the jth position. It is therefore the identity.
This heuristically makes sense as it is saying that embedding the n-simplex as the
jth face of the (n+1)-simplex and then taking the projection of this onto the j-th
face will give you back what you started with.

□

3.3. Simplicial Sets. A simplicial set aims to have the same structural properties as
topological simplices, without unneeded geometric information such as the embedding in
space or the length of lines. The properties it turns out are important to preserve in
homotopy theory are the properties of the δi and si given in lemmas 3.5 and 3.8. A good
introduction to the theory of simplicial sets is given by [Rie11].

Definition 3.9. A simplicial set is a sequence (Xn)n of sets with maps ∂i : Xn → Xn−1

and σj : Xn → Xn+1 which satisfy the simplicial identities:

(S1) ∂i∂j = ∂j−1∂i if i < j,
(S2) σiσj = σj+1σi if i ≤ j,

(S3) ∂iσj =


σi−1∂j if i < j,

1Xn if i ∈ {j, j + 1},
∂jσi−1 if i > j + 1.

These maps are called face and degeneracy maps respectively. A simplex x ∈ Xn is
called degenerate if it in the image of a degeneracy map i.e. x = σi(y) for some i and
y ∈ Xn−1. Otherwise, it is called non-degenerate.

The definition we have given for simplicial sets is very useful when doing computations.
However, we have an alternative definition of a simplicial set:

Definition 3.10. (Alternative definition of simplicial set) A simplicial set is a con-
travariant functor X : ∆ → Set. Equivalently, a simplicial set is a covariant functor
X : ∆op → Set.

We should probably check that this agrees with our previous definition.

Proposition 3.11. The two definitions of a simplicial set, definitions 3.9 and 3.10, agree.

Proof. Suppose X̃ is a contravariant functor ∆ → Set. Then we can define a non-negative
sequence of sets by assigning Xn := X̃[n]. Recall from definition 2.8 that in ∆ we have
the maps ϵi : [n − 1] → [n] and ηi : [n + 1] → [n]. We define face and degeneracy maps

for 0 ≤ i ≤ n by ∂i := X̃(ϵi) : Xn → Xn−1 and σi := X̃(ηi) =: Xn → Xn+1. These satisfy

the simplicial identities due to the contravariance of X̃ and lemma 2.11. Hence we have a
simplicial set in the sense of definition 3.9.

Now, conversely, suppose that we have a non-negative sequence (Xn)n∈N of sets with
face and degeneracy maps ∂i and σi which is a simplicial setX in the sense of definition 3.9.
We define a map X̃ : ∆ → Set given by X̃[n] := Xn. For any morphism α ∈ ∆, recall that
we can factorise α into a unique composition of the ϵi and ηi by lemma 2.12. Therefore, it
is enough to determine what X̃ does on these maps, and extend this cofunctorially so that
for any composeable maps α and β we have X̃(αβ) = X̃(β)X̃(α). We define X̃(ϵi) := ∂i
and X̃(ηi) := σi. The simplicial identities on X forces X̃ to to be well-defined.

□



17

By definition 3.10, the morphisms between simplicial sets must be morphisms between
functors— or in other words, natural transformations. This means that for every object
Xn, we must define a map fn : Xn → Yn such that it commutes with maps Xn → Xm.
Since all maps are generated by face and degeneracy maps, it is enough to say that fn
needs to commute with faces and degeneracies. Moreover, this justifies our desire to
have degeneracy maps; without degeneracy maps, we would not be able to have this neat
description of simplicial maps.

Definition 3.12. A simplicial map f : X → Y is a collection of set maps Xn → Yn that
commute with the face and degeneracy maps.

Definition 3.13. There is a category sSet which has:

• Simplicial sets as objects.
• Simplicial maps as morphisms.

This is a well-defined category by the following proposition.

Proposition 3.14. As categories, sSet = Func(∆op,Set).

Proof. This is a direct corollary to proposition 3.11, and by noting that a simplicial map
commuting with face and degeneracy maps means that f is a natural transformation. □

Moreover, by this categorical definition, we can define the simplest examples of simplicial
sets, which are fundamental to the theory that follows.

Definition 3.15. Define the simplicial set ∆n : ∆op → Set by ∆n = Hom∆(−, [n]),
which is the functor that sends an object [m] ∈ ∆ to the set of order-preserving maps
Hom∆([m], [n]) and that takes an order-preserving function g : [l] → [m] and sends it
to a function g∗ : Hom∆([m], [n]) → Hom∆([l], [n]) defined by pre-composition— for
f : [m] → [n] we have g∗(f) = g ◦ f : [l] → [n]. It is not hard to check that this defines a
functor. We call ∆n the standard n simplex.

We write ∆n
k = Hom∆([k], [n]), so k-simplices in ∆n are maps from [k] to [n] in ∆.

Let f : [k] → [n] be a k-simplex. Then for 0 ≤ i ≤ n we can define the face map
δi(f) : [k − 1] → [n] by the composite:

[k − 1] [k] [n] .
ϵi f

Similarly, we define the degeneracy map si(f) : [k + 1] → [n] by the composite:

[k + 1] [k] [n] .
ηi f

The standard n-simplex has a unique non-degenerate simplex in ∆n
n that corresponds to

the identity map [n] → [n]. More generally, non-degenerate k-simplices in ∆n
k are precisely

the injective maps [k] → [n].

Example 3.16. We give descriptions of the standard-simplices for small n It is traditional
to denote the elements of ∆n

k by the images of the maps [k] → [n], and to keep track of
degeneracies by repeating elements in the set; this gives a one-to-one correspondence
between these sets and the maps. For example, the set {0, 0, 0} corresponds to the map
η0η0ϵ1ϵ2 : [2] → [2] as:

[2] [1] [0] [1] [2]

{0, 1, 2} {0, 1} {0} {0, 0} {0, 0, 0}

ϵ2 ϵ1 η0 η0

If we left out the repeated zeroes, we would not be able to tell which map this set
corresponded to. We choose this notation rather than the function notation in order to
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emphasise the connection to topological simplices. We can think of each number as being
a vertex.

• ∆0 is the simplicial set with ∆0
0 = {{0}} and ∆0

k = {{0, 0, ..., 0}}.
• ∆1 is given by ∆1

0 = {{0}, {1}}, ∆1
1 = {{0, 1}, {0, 0}, {1, 1}}, and for k > 1, ∆1

k is
full of degenerate simplices.

• ∆2 is given by:

∆2
0 = {{0}, {1}, {2}},

∆2
1 = {{0, 1}, {1, 2}, {0, 2}, {0, 0}, {1, 1}, {2, 2}} ,

∆2
2 =

{{0, 0, 0}, {0, 0, 1}, {0, 0, 2}, {0, 1, 1}, {0, 1, 2},
{0, 2, 2}, {1, 1, 1}, {1, 1, 2}, {1, 2, 2}, {2, 2, 2}

}
,

and for k > 2, ∆2
k is full of degenerate simplices.

As we can see, these quickly become very large because of all of the degenerate simplices.

The standard n-simplices are fundamental objects in the theory of simplicial sets by
the following result.

Proposition 3.17. Let [n] ∈ ∆ and let X : ∆op → Set. Simplicial maps ∆n → X
correspond bijectively to elements in Xn.

This is direct from the Yoneda lemma as explained in ([Rie11], 3), which we shall not
prove here due to space constraints; a proof of the lemma is given in ([Rie17], Theorem
2.2.4). This proposition tells us that the ∆n represent in some way all n-simplices in
a simplicial set X, and by considering maps from these standard simplices we can fully
understand X. It also tells us that any simplex x ∈ Xn can be thought of as a simplicial
map x̃ : ∆n → X.

Definition 3.10 allows us to define the more general notion of a simplicial object.

Definition 3.18. A simplicial object in a category C is a contravariant functor ∆ → C.
There is a category of simplicial objects which we denote sC. The morphisms f : X → Y

in sC are determined by a sequence of morphisms fn : Xn → Yn in C which commute
with the face and degeneracy maps, or equivalently, natural transformations between the
contravariant functors X and Y .

Example 3.19. A simplicial set is a simplicial object in the category Set.

Example 3.20. Define a covariant functor ∆ : ∆ → Top by ∆[n] = ∆n, and for each
0 ≤ i ≤ n, ∆(ϵi) = δi and ∆(ηi) = si. By lemmas 3.5 and 3.8, these satisfy the dual
simplicial relations, and so by a dual argument to proposition 3.11 is a well-defined functor.
Hence the set of topological simplices is a cosimplicial object in the category Top. This
makes precise the connection between simplicial sets and topological simplices.

3.3.1. The Singular Simplicial Set. We said that simplicial sets were made to provide a
combinatorial model of topological spaces. We can now roughly state how that is done.
In much the same way that we can think of n-simplices in Xn as maps ∆n → X, we can
think of n-simplices in a topological space X as continuous maps ∆n → X.

Definition 3.21. Let X be a topological space. We define

Sn(X) = {u : ∆n → X such that u is continuous} = HomTop(∆n, X).

We write S∗ to be the collection of these. We call this the singular simplicial set of X.

Example 3.22. We depict what SnX roughly looks like for low dimensional n on the
annulus in Figure 5. Note that there are infinitely many elements in each set in this case,
and we only depict a sub-collection of them.
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X X X

Figure 5. Where X is the annulus, we show S0(X) (left), S1(X) (centre),
and S2(X) (right). The elements of these sets are the maps indicated by the arrows.

As the name suggests, S∗X turns out to be a simplicial set. This is because the maps
δi and si of ∆n are transferred over by pre-composition (see Figure 6). It turns out that
S∗ is a functor Top → sSet that has the special property that all homotopical data is
preserves.

X

δ0(∆1)

u ◦ δ0(∆1)

Figure 6. A visualisation of how the singular simplicial set inherits face
maps through pre-composition with u.

There is a partial converse of this functor | − | : sSet → Top called geometric reali-
sation, which roughly sends an n-simplex in a simplicial set to a copy of the topological
simplex ∆n, and then glues these all together in a way that is determined by the face and
degeneracy maps. For any topological space X, |S∗X| is homeomorphic to X. For more
details, see ([May99],16.2).

3.4. Simplicial Abelian Groups. Simplicial abelian groups, in contrast to simplicial
sets, have the special property of being Kan complexes introduced in subsubsection 3.4.1,
which are essential for doing a lot of the theory in section 6.

Definition 3.23. A simplicial abelian group is a simplicial object in the category of
abelian groups, Ab. There is a category sAb which has:

• Simplicial abelian groups as objects.
• Morphism f : A → B which are a collection of abelian group homomorphism
fn : An → Bn that commute with the face and degeneracy maps.

This category is one of the categories that appears in the Dold-Kan correspondence.
We can send any simplicial set to a simplicial abelian group by the free functor.

Definition 3.24. Let X be a set. Then the free abelian group generated by X is the set
Z{X} is the set of Z linear combinations of elements of X.

Example 3.25. Let X = {a, b, c}. Then 3a+ 7b− 4c ∈ Z{X}.

Remark 3.26. It is clear that for any set X, Z{X} is an abelian group— the structure
is inherited from the structure of Z. We could rephrase this to say that Z is a functor
from Set to Ab, with its effect on morphisms just functions just linearly extending them.
However, what we are interested in is simplicial abelian groups, so it would be useful if
this restricted to a functor from simplicial sets to simplicial abelian groups. This is the
content of the next lemma.
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Lemma 3.27. There is a well-defined functor Z : sSet → sAb:

• A simplicial set X is sent to ZX with (ZX)n = Z{Xn}.
• A simplicial map f : X → Y is extended linearly to become a map Zf : ZX → ZY .

We call this the free functor.

Proof. Let X be a simplicial set. Then X is a functor X : ∆op → Set. Compose this with
the functor Z : Set → Ab, to get a functor ZX : ∆op → Ab. Hence ZX is a simplicial
abelian group. □

Example 3.28. There is a simplicial abelian group Z∆n for each n ∈ N.

• For n = 0, Z∆0
0 is the free abelian group with generator as a point, and so is

isomorphic to Z. For k > 0 we have Z∆0
k = Z{{0, 0, ..., 0}}, the free abelian group

generated by the one degenerate simplex we have and so is isomorphic to Z at
every level.

• For n = 1, Z∆1 is given by Z∆1
0 = Z{{0}, {1}}, Z∆1

1 = Z{{0, 1}, {0, 0}, {1, 1}}
and for k > 1, Z∆1

k is full of degenerate simplices. This is a simplicial abelian
group with face maps and degeneracies given by extending δi and si linearly.

Example 3.29. For any topological space X, there is a simplicial abelian group given by
ZS∗X.

This following lemma will be useful in section 6.

Lemma 3.30. Let A and B be simplicial abelian groups, and let f : A→ B be a simplicial
map between them. Then ker f is a simplicial abelian group too.

Proof. For each n, fn : An → Bn is a homomorphism of abelian groups. Hence ker fn is an
abelian subgroup of An. The elements in ker fn are closed under face and degeneracy maps,
since f commutes with them: for x ∈ ker fn, we have fn−1(∂i(x)) = ∂i(fn(x)) = ∂i(0) = 0,
so ∂i(x) ∈ ker(fn−1). Similarly, fn+1(σi(x)) = σi(fn(x)) = σi(0) = 0, so σi(x) ∈ ker(fn+1).
Hence (ker fn)n forms a simplicial abelian group. □

3.4.1. Horns. In this section, we define the notion of a horn, which will be useful later.
These can be thought of as a simplicial set missing a face and its interior. Certain simplicial
sets have the property that these faces can always be filled back in; such simplicial sets
are called Kan complexes. This property is inspired by the homotopy lifting condition of
CW complexes in topology, which is important in understanding topological homotopies.
For more details of topological lifting, see ([Str21], 22) or ([Hat01], 1.3). In the context
of simplicial sets, these are studied in ([Rie11], 5) and ([Fri12], 7). Importantly, the
singular simplicial set of a topological space S∗X and any simplicial abelian group are
Kan complexes. This allows us to do homotopy theory in these settings.

Definition 3.31. The simplicial horn Λnk is the union of all the faces of ∆n except the
k-th face:

Λnk :=
n⋃
i=0
i ̸=k

δi(∆
n).

Example 3.32. The three horns Λ2
0, Λ

2
1 and Λ2

2 of ∆2 can be visualised as in Figure 7.

We can generalise this notion to an arbitrary simplicial set:

Definition 3.33. A horn is a map of simplicial sets Λnk → X. Equivalently, it is a collec-
tion of (n−1)-simplices (y0, ..., yk−1,−, yk+1, ..., yn), such that ∂ixj = ∂j−1xi wherever this
is defined. This condition should be thought of as saying that these simplices fit together
and are not disjoint. A horn Λnk → X is sometimes referred to as an (n, k)-horn.

We now isolate the special property of being able to fill these horns.
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2

0 1

∆2

2

0 1

Λ2
0

2

0 1

Λ2
1

2

0 1

Λ2
2

Figure 7. The 3 horns of ∆2.

Definition 3.34. A Kan complex is a simplicial set X such that any horn Λnk → X in X

can be extended along the inclusion Λkn ↪−→ ∆n. Equivalently, there exists a map ∆n → X
such that the following diagram commutes.

Λnk X

∆n

∃

This is sometimes called the Kan condition.

There is an equivalent reformulation of this definition which is less conceptual, but more
combinatorial.

Definition 3.35. A simplicial set X is said to be a Kan complex if for any collection
of (n − 1)-simplices (y0, ..., yk−1,−, yk+1, ..., yn), such that ∂ixj = ∂j−1xi wherever this is
defined, there exists an n-simplex y such that diy = yi for all i ̸= k.

Not all simplicial sets have this property; in fact, not even the standard simplices have
this property.

Example 3.36. (Inspired by [Fri12], example 7.4)
Λ2
0 consists of the 1-simplices {0, 1}, {0, 2} and degeneracies. Consider the map f :

Λ2
0 → ∆1 given by sending {0, 1} to {0, 1} and {0, 2} to {0, 0}. This is order-preserving,

so is a well-defined simplicial map.

2

0 1

Λ2
0

0 1

∆1

f

We note that this map has the assignments 0 7→ 0, 1 7→ 1, 2 7→ 0. Any extension of this
map x : ∆2 → ∆1 with xi = f would have to respect this; therefore {1, 2} would have
to be sent to {1, 0}, but this is not order-preserving, and therefore not a simplicial map.
Therefore, ∆1 is not a Kan complex.

We have the following lemma, which will be very important in section 6. This result is
originally due to [Moo57], and motivates our study of simplicial abelian groups. The proof
of this is constructive and gives an explicit algorithm for computing these horn fillers.

Lemma 3.37. The underlying simplicial set of a simplicial abelian group is a Kan com-
plex.

Proof. Let A be a simplicial abelian group and let (x0, ..., xk−1,−, xk+1, ..., xn+1) be a
horn in An, so that ∂ixj = ∂j−1xi for all i < j and i, j ̸= k (*). We use induction on r
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to find an ar ∈ An+1 with ∂i(ar) = xi for all i ≤ r, i ̸= k. We start the induction with
a0 = σ0(x0) ∈ An+1. This has ∂0(a0) = x0 by (S3), as required. Now, suppose we have an
ar−1 such that ∂iar−1 = xi for all i ≤ r − 1, i ̸= k. If r = k, we set ar = ar−1, and then
∂i(ar) = xi for all i ≤ r and i ̸= k; otherwise, let ur = −xr + ∂r(ar−1). For i < r, i ̸= k,
we have:

∂i(ur) = ∂i(−xr + ∂r(ar−1))

= −∂i(xr) + ∂i∂r(ar−1) as ∂i is a group homomorphism,

= −∂i(xr) + ∂r−1∂i(ar−1) by (S1),

= −∂i(xr) + ∂r−1(xi) by the inductive hypothesis,

= −∂i(xr) + ∂i(xr) by (*),

= 0.

Therefore, by (S3), we have ∂iσr(ur) = σr−1∂i(ur) = σr−1(0) = 0, and so if we define
ar = ar−1 − σr(ur), then for each 0 ≤ i ≤ r − 1, i ̸= k, we have

∂i(ar) = ∂i(ar−1)− ∂iσr(ur) = xi.

Moreover, for i = r ̸= k, we have:

∂r(ar) = ∂r(ar−1)− ∂rσr(ur)

= ∂r(ar−1)− ur, by (S3),

= ∂r(ar−1)− (−xr + ∂r(ar−1))

= xr.

In either case, the element ar ∈ An+1 satisfies the induction step, and so we can find a
y = an ∈ An+1 such that ∂i(y) = xi for all i ̸= k, as required. Hence A is a Kan complex.

[Proof inspired and adapted from ([Wei95], Lemma 8.2.8)] □

By definition 3.34, we can rephrase this in the following way.

Corollary 3.38. Let A be a simplicial abelian group and suppose we have a horn given
by a map f : Λnk → A. Then f extends to an n-simplex of A, i.e. there exists a map
x : ∆n → A such that xi = f . Equivalently, there exists an x : ∆n → A such that the
following diagram commutes.

Λnk A

∆n

f

i ∃x

Note that in this proof, we required the use of elements having additive inverses, so it
cannot be generalised to arbitrary simplicial sets. We now compute an example to show
how the algorithm can be implemented.

Example 3.39. Suppose we have a (2, 2)-horn (x0, x1,−) in a simplicial abelian group
A. This means we have the relation ∂0x1 = ∂0x0 (**). We calculate y ∈ A3 such that
∂0(y) = x0 and ∂1(y) = x1. First, we set a0 = σ0(x0). This clearly has the property that
∂0(a0) = x0. Now, let u1 = ∂1(a0)− x1 = x0 − x1. Then, we proceed by setting

a1 = σ0(x0)− σ1(x0 − x1) = σ0(x0)− σ1(x0) + σ1(x1).

The next step is the case r = k, so we set y = a2 = a1, and we have:
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∂0(y) = ∂0σ0(x0)− ∂0σ1(x0) + ∂0σ1(x1)

= x0 − σ0∂0(x0) + σ0∂0(x1) by (S3),

= x0 − σ0∂0(x0) + σ0∂0(x0) by (**),

= x0.

Moreover,

∂1(y) = ∂1σ0(x0)− ∂1σ1(x0) + ∂1σ1(x1)

= x0 − x0 + x1 by (S3),

= x1.

Therefore, y is our desired filling.

3.5. Simplicial Homotopy Groups. Our aim is to describe an algebraic notion of ho-
motopy through the use of simplicial abelian groups. This section explains how we do this.
We present simplicial homotopy groups in the setting of abelian groups; these notions can
be generalised to any Kan complex.

Definition 3.40. Let A be a simplicial abelian group. We define

Z̃n(A) = {x ∈ Xn : ∂i(x) = σn−1
0 (0) for all i = 0, ..., n}

=
n⋂
i=0

ker(∂i : Xn → Xn−1).

Remark 3.41. We often just write 0 instead of σn−1
0 (0) for ease of notation. This makes

more sense as σn−1(0) is the zero element of the abelian group An anyway.

We now define the notion of simplicial homotopy:

Definition 3.42. Let A be a simplicial abelian group. We say that two elements x, x′ ∈ An
are homotopic if there is a y ∈ An+1 such that

∂i(y) =


0 if i < n

x if i = n

x′ if i = n+ 1.

We call y a homotopy from x to x′.

This definition may seem to contrast with the intuitive notion of homotopy given in
subsection 3.1. However, by examining the lowest-dimensional case— homotopies (or
paths) between points— we can see why this definition is used. Let X be a topological
space and let a and b be two points that are homotopic, i.e., there is a path between them
u. We consider u as a map from the 1-simplex: u : ∆1 → X. Therefore u is an element
of S1(X) which has ∂0(u) = a ∈ S0(X) = X and ∂1(u) = b ∈ S0(X) and so is a simplicial
homotopy between a and b in S1X. Similarly, figure 8 gives a visual reasoning behind why
homotopies between paths correspond to maps from ∆2 to X.

Lemma 3.43. Let A be a simplicial abelian group, and consider the group Zn(A). For
x, x′ ∈ Zn, we say x ∼ x′ if there is a homotopy from x to x′. Then ∼ is an equivalence
relation on Zn(A).

Proof. For any x ∈ Zn(A), y = σn(x) is a homotopy from x to x, since:
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a

b
X

u

v

Figure 8. A simplicial homotopy between u and v in X corresponds to a
map from ∆2 into X. As we can fill in the space between u and v, we can
imagine continuously deforming u into v through the pink region, giving
our intuitive notion of homotopy between paths.

∂n+1y = ∂n+1σnx,

= x by (S3),

and similarly:

∂ny = ∂nσnx,

= x by (S3).

Moreover, for i < n:

∂iy = ∂iσnx,

= σn−1∂ix by (S3) with i < n,

= σn−1(0) since x ∈ Zn(A),

= 0.

Hence, this is a simplicial homotopy from x to x, so x ∼ x and the reflexivity condition
holds.

Now, let x ∼ x′ and x ∼ x′′ in An. Let y ∈ An+1 be a homotopy from x to x′ and let
y′ ∈ An+1 be a homotopy from x to x′′. Then

∂i(y) =


0 if i < n

x if i = n

x′ if i = n+ 1,

and

∂i(y
′) =


0 if i < n

x if i = n

x′′ if i = n+ 1.

By applying the Kan condition to the horn (0, 0, ..., 0, y, y′,−), there exists a z ∈ An+2

with ∂nz = y, ∂n+1z = y′ and ∂iz = 0 for all i < n. The element ∂n+2z provides the
desired homotopy from x to x′′:
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∂n∂n+2z = ∂n+1∂nz = ∂n+1y
′′ = x′,

∂n+1∂n+2z = ∂n+1∂n+1z = ∂n+1y
′ = x′′,

and for i < n:

∂i∂n+2z = ∂n+1∂iz = ∂n+10 = 0.

So x ∼ x′ and x ∼ x′′ =⇒ x′ ∼ x′′. Taking x′′ = x, we see that the symmetry condition
holds, and this also implies that the transitivity condition holds.

□

Definition 3.44. Let A be a simplicial abelian group. We define πn(A) = Z̃n(A)/ ∼,
where ∼ denotes the equivalence relation of being simplicial homotopic.

Remark 3.45. This is an invariant for simplicial abelian groups— if two spaces X and
Y are homeomorphic to each other, then the simplicial homotopy groups π∗(ZSX) and
π∗(ZSY ) are equivalent. The converse of this is often useful: if π∗(ZSX) ̸= π∗(ZSY ),
then X is not homeomorphic to Y .

4. Chain Complexes

4.1. Introduction. Homology theory was developed in the late 1800s by Poincaré and
others as a tool to study holes in topological spaces [Wei95]. Informally, it does this by
making a distinction between cycles on the surface which are the boundary of a hole and
cycles which are not. For example, consider an annulus A, as pictured in Figure 9. Any
cycle u around the centre hole can be shrunk until it fits around the hole, but not further
whilst staying within the space. We identify all such cycles. We can also imagine a cycle
which goes around the hole n times; this is genuinely different from the first kind and
cannot be continuously shrunk to a cycle which goes around the hole fewer times. Any
other cycle v can be shrunk to a point, or alternatively can be viewed as a cycle which
goes round the hole 0 times; thus there is a bijection between classes of cycles and Z.

u
v

Figure 9. Cycles on an annulus. Cycles such as v can be continuously
deformed until they are a point (shown in blue), whereas cycles such as u
can only be shrunk down until they surround the hole (shown in red).

4.2. The Idea Behind Simplicial Homology. We aim to capture this idea algebraically
with simplicial theory; in this subsection we give an informal introduction on how to do
this. A 1-cycle in a space corresponds to a map u ∈ S1X with the endpoints glued together
as seen in Figure 10. This translates to u ◦ δ0(∆1) = u ◦ δ1(∆1), or rearranging we obtain
u ◦ δ0(∆1) − u ◦ δ1(∆1) = 0. This idea generalises to higher dimensions; for u ∈ SnX we
define the algebraic boundary map dn : SnX → Sn−1X by dn(u) =

∑n
i=0(−1)iu ◦ δi; we
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u

Figure 10. A 1-cycle corresponds to a map from the 1-simplex into the
space which glues the endpoints together.

extend this concept linearly to get a map dn : ZSnX → ZSn−1X So an n-cycle is a map
u ∈ ZSnX with u ∈ ker(dn).

Similarly, two 1-cycles that go around the hole once can be continuously deformed into
each other if and only if the space in between them can be filled in with 2-simplices, as
seen in Figure 11.

u

v

Figure 11. the 1-cycle u can be continuously deforms into the 1-cycle v.
Equivalently, we can fill the space between them with 2-simplices.

Again, we generalise this idea to higher dimensions; two n-cycles are to be thought of
as the same if they can be filled in by a collection of (n+1)-simplices. Now, if we calculate
the algebraic boundary of the complex made up by these 2-simplices, the inner blue lines
end up cancelling each other out due to the alternating nature of the sum, and we are left
with u− v. So u− v ∈ img(d2), and more generally two n-cycles are the same if and only
if their difference is in img(dn+1).

Recall that the images and kernels of group homomorphisms are subgroups. We can see
now another reason why we choose to work with ZSn(X) rather than just Sn(X); since the
former is an abelian group, img(dn+1) and ker(dn) are both normal subgroups of ZSn(X).
Moreover, dn ◦ dn+1 = 0, and so img(dn+1) is a subgroup of ker(dn), allowing us to form
the quotient group Hn(ZSX) := ker(dn)/ img(dn+1). This is called the nth homology
group of the space, and is invariant under homeomorphism. Moreover, Hn(ZSX) tells us
information about how many holes there are. For example, if Hn(ZSX) ∼= Zm, this tells
us there are m n-dimensional holes in X. For the annulus in Figure 9, we can calculate
that H2(ZSX) ∼= Z1. The exponent 1 tells us that there is one 2-dimensional hole, which
of course we already knew.

4.3. Chain Complexes. In order to study this idea rigorously and in a more general
setting, we introduce the notion of chain complexes.
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Definition 4.1. A chain complex (A∗, d) of abelian groups is a sequence of abelian groups
{An}n∈Z equipped with linear homomorphisms {dn : An → An−1} such that dn◦dn+1 = 0.
These maps are called differentials.

... An+1 An An−1 ...
dn+2 dn+1 dn dn−1

We sometimes write d2 = 0.

The condition dn ◦ dn+1 = 0 captures the idea that the boundary of a boundary is zero.

Remark 4.2. To illustrate the diversity of this abstract concept, we introduce an appli-
cation to differential geometry and physics. Let ψ be any scalar field and let V be any
vector field. Recall that the curl of a gradient is zero i.e. ∇×(∇ψ) = 0, and the divergence
of a curl is again zero i.e. ∇ · (∇×V) = 0. In fact, we can rephrase this as ∇2 = 0, and
so ∇ satisfies the conditions to be a differential. From this, we can construct the de Rham
cohomology, which has applications in constructing invariants on smooth manifolds and
also in Lagrangian Mechanics [Lee13].

Now that we have defined what a chain complex is, it is sensible to define a map between
them. This will allow us to form a category of chain complexes.

Definition 4.3. Let C∗ and D∗ be chain complexes with differentials d∗ and e∗ re-
spectively. A chain map u∗ : C∗ → D∗ is a family of abelian group homomorphisms
un : Cn → Dn which commute with the differentials, i.e.

un−1 ◦ dn = en ◦ un
for all n.

This is equivalent to saying that the following diagram commutes.

... Cn+1 Cn Cn−1 ...

... Dn+1 Dn Dn−1 ...

dn+2

un+1

dn+1

un

dn dn−1

un−1

en+2 en+1 en en−1

Proposition 4.4. The composition of chain maps is well-defined and associative.

Proof. Let C∗, D∗ and E∗ be chain complexes. Let u∗ : C∗ → D∗, and v∗ : D∗ → E∗ be
chain complex maps. We call the differentials of each chain complex dn, but be aware that
these are potentially different for each complex. We have the following diagram:

... Cn+1 Cn Cn−1 ...

... Dn+1 Dn Dn−1 ...

... En+1 En En−1 ...

dn+2

un+1

dn+1

un

dn dn−1

un−1

dn+2

vn+1

dn+1

vn

dn dn−1

vn−1

dn+2 dn+1 dn dn−1

This commutes by definition of chain maps and by being able to glue together commu-
tative diagrams (lemma 2.39), and so v∗ ◦ u∗ : C∗ → E∗ is a chain map. Associativity
follows from the fact that each of the maps is a homomorphism of abelian groups, which
have associative composition. □

We can define the notion of an isomorphism too.
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Definition 4.5. Let C∗ and D∗ be chain complexes. An isomorphism of chain complexes
is a chain map u∗ : C∗ → D∗ such that un is an isomorphism of groups at each level.

Remark 4.6. It is not enough to show that there is an isomorphism of groups at every
level, and we do really need to show that this is a chain map. Consider any chain complex
(C, d). There is also a chain complex with differential the zero map, (C, 0). In this case
we have an isomorphism at every level (since Cn = Cn), but not a chain map unless d = 0.

... Cn+1 Cn Cn−1 ...

... Cn+1 Cn Cn−1 ...

dn+2 dn+1 dn dn−1

0 0 0 0

Often in pure mathematics, after we define what an object is, we go on to define a
suitable notion of a subobject. It is useful for us to define the notion of a subcomplex.

Definition 4.7. Let C∗ be a chain complex of abelian groups. A chain complex C ′
∗ is

a subcomplex of C∗ if each C ′
n is a subgroup of Cn, and if the differential on C ′

∗ is the
restriction of the differential on C. Equivalently, this says that that C ′

n is a subcomplex
of Cn whenever the inclusion maps in : C ′

n ↪−→ Cn form a chain map.

As subgroups of an abelian group are all normal, then we know that Cn/C
′
n is a well

defined abelian group for each n.

Definition 4.8. Let C∗ be a chain complex and C ′
∗ be a subcomplex of this. Then we

can form the quotient complex (C/C ′)∗ with (C/C ′)n = Cn/C
′
n and differential given by

d̃n(x+ C ′
n) = dn(x) + C ′

n.

Remark 4.9. It is clear that this defines a chain complex, with d̃2 = 0 coming from
d2 = 0.

Just as we are able to take the disjoint union of sets or direct sum of groups, we want
a sensible notion of have a direct sum of chain complexes. These ideas are all generalised
under the categorical notion of a coproduct ([Rie17], definition 3.1.23); we shall state the
definition explicitly here.

Definition 4.10. Let (C∗, d
C), (D∗, d

D) be chain complexes. The direct sum is defined
to be the chain complex (C ⊕ D, dC ⊕ dD), where level-wise (C ⊕ D)n := Cn ⊕ Dn, is
the direct sum of abelian groups and (dC ⊕ dD)n : (C ⊕ D)n → (C ⊕ D)n−1 is given by
(dC ⊕ dD)n(x, y) = (dCn (x), d

D
n (y)).

Remark 4.11. It is clear that this defines a chain complex; recall that the direct sum of
abelian groups is again an abelian group, and also (dC ⊕ dD)2 = ((dC)2, (dD)2) = (0, 0).

Proposition 4.12. Let N and D be subcomplexes of C such that level-wise we have
Nn ⊕ Dn

∼= Cn as abelian groups. Then we have an isomorphism of chain complexes
N ⊕D ∼= C.

Proof. Let N,D and C be as above, with fn : Cn → Nn ⊕Dn the isomorphism of groups
at every level. We must show that fn is a chain map, i.e. that fn−1d

C
n = (dN ⊕ dD)nfn,

or that the diagram

... Cn+1 Cn Cn−1 ...

... (N ⊕D)n+1 (N ⊕D)n (N ⊕D)n−1 ...

dCn+2

fn+1

dCn+1

fn

dCn dCn−1

fn−1

(dN⊕dD)n+2 (dN⊕dD)n+1 (dN⊕dD)n (dN⊕dD)n−1
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commutes. For any x ∈ Cn, we write fn(x) = (y, z), so x = y + z is the unique way to
split x into a sum with y ∈ Nn and z ∈ Dn. Then, by definition, it follows that

(dN ⊕ dD)n(fn(x)) = (dNn (y), d
D
n (z)) = (dCn (y), d

C
n (z)),

as N and D are subcomplexes, so have differentials which are just the restriction of dC .
Also, by linearity:

dCn (x) = dCn (y + z) = dCn (y) + dCn (z) = dNn (y) + dDn (z),

with dNn (y) ∈ Nn−1 and dDn (z) ∈ Dn−1. Therefore, this is the unique way to split dCn (x),
and so fn−1(d

C
n (x)) = (dN ⊕ dD)n(fn(x)), as required. □

As our goal is to relate chain complexes to simplicial abelian groups, and as simplicial
abelian groups are defined by a non-negative sequence of abelian groups (An)n≥0, it makes
sense to restrict our attention to chain complexes which look like this.

Definition 4.13. A chain complex C∗ is called non-negatively graded if Cn = 0 for n < 0.

Example 4.14. (Exercise 1.1.1 from [Wei95])
There is a non-negatively graded chain complex C∗ given by

Cn =

{
Z/8Z ifn ≥ 0

0 ifn < 0,

with differential dn(x) = 4x mod 8 for n > 0 and dn = 0 for n ≤ 0. Indeed, this is a
family of abelian groups with dn ◦ dn+1 = 0. This is clear for n ≤ 1, as one of the maps
will be the zero map. For n > 1, pick arbitrary x ∈ Cn. Then

dn ◦ dn+1(x) = dn(4x) = 16x = 8(2x) ≡ 0 mod 8,

as required.

Since we have chain complexes and maps between them, and we have shown that these
maps are composable by proposition 4.4, we can form a category. The identity maps are
identity maps at every level; this is clearly a chain map.

Definition 4.15. There is a category Ch+(Ab) with non-negatively graded chain com-
plexes of abelian groups as its objects, and chain maps as its morphisms.

4.3.1. A Differential on Simplicial Abelian Groups. Our overall goal is to supply func-
tors between the categories of simplicial abelian groups and non-negatively graded chain
complexes. We can now define a differential on simplicial abelian groups.

Definition 4.16. Let A be a simplicial abelian group with face maps ∂i. We define the
alternating sum of face maps dn : An → An−1 by dn =

∑n
i=0(−1)i∂i.

Proposition 4.17. The alternating sum of face maps, dn is a differential.

Proof. We must show that dn ◦ dn+1 = 0. We have
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dn ◦ dn+1 = dn

n+1∑
j=0

(−1)j∂j


=

n∑
i=0

(−1)i∂i

n+1∑
j=0

(−1)j∂j


=

n∑
j=0

n+1∑
i=0

(−1)i+j∂j∂i by linearity,

=
∑

0≤i<j≤n
(−1)i+j∂i∂j +

∑
0≤j≤i<n

(−1)i+j∂i∂j breaking the sum apart,

=
∑

0≤i<j≤n
(−1)i+j∂j−1∂i +

∑
0≤j≤i<n

(−1)i+j∂i∂j by (S1),

= −
∑

0≤i≤j<n
(−1)i+j∂j∂i +

∑
0≤j≤i<n

(−1)i+j∂i∂j by reindexing j for j + 1,

= 0.

□

Example 4.18. For any topological space X, S∗X can be considered a chain complex
with differential given by dn(u) =

∑n
i=0(−1)iδi ◦ u. We call this the topological boundary

map. This is the alternating sum of face maps for this simplicial set.

4.4. Homology of Chain Complexes. The rough definition of homology for topolog-
ical spaces we gave in subsection 4.1 is generalised to the notion of homology of chain
complexes.

Definition 4.19. Let (C∗, dn) be a chain complex of abelian groups. We define:

• Zn(C∗) = ker(dn : Cn → Cn−1).
• Bn(C∗) = img(dn+1 : Cn+1 → Cn).

The elements of Zn(C∗) are called cycles and the elements of Bn(C∗) are called bound-
aries. Any y ∈ Bn(C) is of the form y = dn+1(x). We note that as dn ◦ dn+1 = 0, we have
dny = dn ◦ dn+1(x) = 0, so y ∈ Zn(C∗). Hence Bn(C∗) is a subgroup of Zn(C∗). It follows
that there is a well-defined quotient group:

Hn(C∗) = Zn(C∗)/Bn(C∗).

We call this the n-th homology group.

Remark 4.20. We often write Z∗(C), B∗(C) and H∗(C) to refer to the system of groups
as a whole.

Proposition 4.21. Z∗, B∗ and H∗ form functors Ch(Ab) → Ab.

inspired by ([Str21], Proposition 13.11). Let u∗ : C∗ → C ′
∗ be a chain map. We show that:

(i) for all n, u(Zn(C)) is a subgroup of Zn(C
′).

(ii) for all n, u(Bn(C)) is a subgroup of Bn(C
′).

(iii) there is a well-defined map H∗(u) : H∗(C) → H∗(C
′) given level-wise by

Hn(u)(z +Bn(C)) = u(z) +Bn(C
′).

This is an essential step in showing that the functors are well-defined.

(i) Let z ∈ Zn(C). Then d
C
n (z) = 0, and so dC

′
n (un(z)) = un−1(d

C
n (z)) = un(0) = 0 as

u∗ is a chain map and so commutes with the differentials. So un(z) ∈ Zn(C
′), as

required.



31

(ii) Let b ∈ Bn(C). Then b = dCn+1(x) for some x ∈ Cn+1. So we have

un(b) = un
(
dCn+1(x)

)
= dC

′
n+1(un+1(x)),

so un(b) ∈ Bn(C
′), as required.

(iii) If z +Bn(C) = z′ +Bn(C) in Hn(C), we must check that

un(z) +Bn(C
′) = un(z

′) +Bn(C
′)

in Hn(C
′). In this case, we have z − z′ ∈ Bn(C) and so

un(z)− un(z
′) = un(z − z′) ∈ Bn(C

′)

by (ii) and the fact that u is a group homomorphism. Hence

un(z) +Bn(C
′) = un(z

′) +Bn(C
′)

in Hn(C
′), so H∗(u) is well-defined.

Now we can define the functors; we have shown what they do on objects of Ch(Ab),
so it remains to show what they do on chain maps. We define

Zn(u) = u|Zn(C) : Zn(C) → Zn(C
′).

By (i), this is well-defined. Similarly, we define Bn(u) = u|Bn(C), : Bn(C) → Bn(C
′) which

is well-defined by (ii). As these are just restrictions, these are compatible with identity
morphisms and composition, and hence are functors. Finally, in (iii) we defined what
H∗ does to chain maps; it is clear from this definition that if u∗ is the identity on C∗,
then H∗(u) is the identity on H∗(C). It remains to show that this is compatible with
composition. Suppose we have chain maps:

C∗ C ′
∗ C ′′

∗ .
u v

Then

Hn(v ◦ u)(z +Bn(C) = (v ◦ u)(z) +Bn(C
′′)

= v(u(z)) +Bn(C
′′)

= Hn(v)(u(z) +Bn(C
′))

= (Hn(v) ◦Hn(u))(z +Bn(C)),

so H∗ is compatible with composition, and therefore a functor.
□

Remark 4.22. We have defined a functor ZS∗ from Top to Ch+(Ab). We can therefore
define the homology of a topological space by the functor H∗ZS∗ : Top → Ab. The
groups given as a result of this functor are invariant under homeomorphism. Similarly, for
a chain complex C∗, the groups H∗(C) are invariant under many transformations of chain
complexes for example chain homotopies. For more details and a more precise proof of
the content of this remark, the interested reader is referred to [Str21, Hat01].

5. The Dold-Kan Correspondence

The main result of this chapter and indeed this project is proven in this section. We have
seen that both chain complexes and simplicial abelian groups are useful for understanding
topological spaces, and that there are many similarities between them. The Dold-Kan
correspondence makes this precise.

Theorem 5.1 (The Dold-Kan Correspondence). There is an equivalence of categories
between Ch+(Ab) and sAb.
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As per the definition of equivalence of categories, to prove this we need to construct
functors:

K : Ch+(Ab) sAb : N

such that KN is naturally isomorphic to 1sAb and NK is naturally isomorphic to
1Ch+(Ab). The functor N is constructed in subsection 5.1. The functor K is constructed
and elaborated on in subsection 5.2. The natural isomorphisms are proven in subsec-
tion 5.3. We then use this result to prove a relationship between the homology groups and
the homotopy groups in subsection 5.5.

5.1. From Simplicial Abelian Groups to Non-negatively Graded Chain Com-
plexes. We construct a functor from simplicial abelian groups to non-negatively graded
chain complexes, and prove that this is a functor by checking all the conditions. As part
of the proof of the Dold-Kan correspondence, it will be helpful to introduce two other
functors from simplicial abelian groups to non-negatively graded chain complexes. These
functors will be related in theorem 5.10.

5.1.1. The Un-normalised Chain Complex. We start by introducing the most simple of
the three functors from sAb to Ch+(Ab) that we will introduce.

Lemma 5.2. There is a functor C : sAb → Ch+(Ab) given level-wise:

• On objects, Cn(A) := An.
• On morphisms f : A→ B, we let C(f) : C(A) → C(B) be given by C(f) := f .

The resulting image C(A) is a non-negatively graded chain complex with differential
dCn =

∑n
i=0(−1)i∂i.

Proof. Proposition 4.17 proves that the image of A is a non-negatively graded chain com-
plex of abelian groups. As f commutes with degeneracies, N(f) commutes with the
differential, and so is a chain map. It is trivial to check the functoriality axioms. □

5.1.2. The Degenerate Chain Complex. We now introduce a functor which is the restriction
of C to only the degenerate simplices of A.

Proposition 5.3. There is a functor D : sAb → Ch+(Ab) defined level-wise:

• On objects, Dn(A) :=
∑n−1

i=0 σi(Cn−1A).
• On morphisms, D(f) := f |D(A).

The differential is defined by dDn := dCn |D.

Proof. Since simplicial maps commute with degeneracies, the image of a degeneracy under
a simplicial map is a degeneracy. Moreover, as the differential is defined in terms of
degeneracies, commuting with the differential is the same as commuting with degeneracies.
Hence, D(f) is a chain map, and so this map is well-defined on morphisms. To show that
it is well-defined on objects, we show that the image is a chain complex, by showing that
dD does actually define a differential. First, we prove that dDn (Dn(A)) ⊆ Dn−1(A). We do
this by showing that the image under this map is a sum of degeneracies. It is enough to
show this for y = σj(x) ∈ Dn(A) for some 0 ≤ j ≤ n− 1 and x ∈ Cn−1(A), and the result
follows by linearity.



33

dDn (y) =

n−1∑
i=0

(−1)i∂iσj(x),

=

j−1∑
i=0

(−1)i∂iσj(x) + (−1)j∂jσj(x) + (−1)j−1∂j+1σj(x) +
n−1∑
i=j+1

(−1)i∂iσj(x),

=

j−1∑
i=0

(−1)iσj−1∂i(x) + (−1)jx+ (−1)j−1x+
n−1∑
i=j+1

(−1)iσj∂i−1(x),

= σj−1

(
j−1∑
i=0

∂i(x)

)
+ σj

 n−1∑
i=j+1

∂i−1(x)

 ∈ Dn−1(A),

where the third equality follows from (S3). The proof that dD is a differential follows the
same line of reasoning as proposition 4.17. As D is defined by restrictions, it is compatible
with composition and identities, and so is a functor.

□

We also have:

Lemma 5.4. For any simplicial abelian group A, D(A) is a subcomplex of C(A).

Proof. Since 0 = σi(0) it follows that 0 ∈ Dn(A). By linearity it also follows that Dn(A)
is closed under addition and inverses are contained in Dn(A). Hence Dn(A) is a subgroup
of Cn(A). By definition, dCn |D = dDn , which completes the proof. □

5.1.3. The Normalised Chain Complex. We can now define the functor N that appears in
the Dold-Kan correspondence. It will turn out that N(A) is isomorphic as a chain complex
to C(A)/D(A), as is proved in theorem 5.10. This means that N(A) can be thought of as
the complex C(A) modulo all degeneracies.

Proposition 5.5. There is a functor N : sAb → Ch+(Ab) given level-wise:

• On objects A ∈ sAb, we define Nn(A) :=
⋂n−1
i=0 ker(∂i : An → An−1) for n > 0,

and N0(A) := A0.
• On morphisms f : A→ B, we define Nn(f) := fn|Nn(A).

The differential on Nn(A) is given by dNn := (−1)n∂n.

Proof. We show that this is well-defined by showing the image of a simplicial group is a
non-negatively graded chain complex, and the image of a simplicial map is well-defined
and a chain map. We then show that this is a functor.

Let A ∈ sAb. Recall that the kernel of a group is a subgroup, and that the intersection
of groups is another group. Therefore, for each n, Nn(A) is an abelian group. We start by
showing that dN is a well-defined map by showing dN (Nn(A)) ⊆ Nn−1(A). Let y ∈ Nn(A).
We want to show that dNn (y) ∈ Nn−1(A). We do this by showing that ∂idn(y) = 0 for all
0 ≤ i ≤ n − 2. This follows from the simplicial identity (S1): for any 0 ≤ i ≤ n − 2, we
have:

∂id
N
n (y) = (−1)n∂i∂n(y) = (−1)n∂n−1∂i(y) = 0,

so dNn (y) ∈ Nn−1(A), as required. To show that N(A) ∈ Ch+(Ab), it remains to show
that dn ◦ dn+1 = 0. This too follows from (S1); indeed, dn ◦ dn+1 : Nn+1(A) → Nn−1(A)
and Nn+1(A) =

⋂n
i=0 ker(∂i : An+1 → An). In particular, ∂n(Nn+1(A)) = 0. Now,

dn ◦ dn+1(Nn+1(A)) = (−1)2n+1∂n∂n+1(Nn+1(A)) = −∂n∂n(Nn+1(A)) = −∂n(0) = 0,

as required.
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To show the image of a simplicial map is well-defined under N , we must show that its
image commutes with the differential. Let A and B be simplicial sets with face maps ∂Ai
and ∂Bi respectively, and let f : A → B be a simplicial map. Now, suppose x ∈ Nn(A).
Then ∂Ai x = 0 for all 0 ≤ i ≤ n − 1. Since fn commutes with face maps, then for all
0 ≤ i ≤ n− 1,

∂Bi (fn(x)) = fn
(
∂Ai x

)
= fn(0) = 0,

and so fn(x) ∈
⋂n−1
i=0 ker

(
∂Bi : Bn → Bn−1

)
= Nn(B). To see that it is a chain map, we

note that the condition for a simplicial map to commute with face maps is the same as the
condition for a chain map to commute with differentials when dN = (−1)n∂n. Therefore,
f commutes with dN and so N(f) = f |N(A) commutes with dN , and so is a chain map.
Hence N(f) is well-defined.

Let A,B and C be simplicial sets, and let f : A → B and g : B → C be simplicial
maps. To show functoriality of N , we need to show it satisfies (F1) and (F2).

(F1) We can see that for x ∈ Nn(A),

N((g ◦ f))(x) := (g ◦ f)|Nn(A)(x)

= g(f(x)) as x ∈ Nn(A),

= g(f |Nn(A)(x))

= g|Nn(B)(f |Nn(A)(x)) as f |Nn(A)(x) ∈ Nn(B),

= (g|Nn(B) ◦ f |Nn(A))(x)

= N(g)N(f) as required.

(F2) By noting that 1A =
⊕

n∈Z≥0
1An we can easily see that since

N(1An) := 1|Nn(A) = 1Nn(A),

for all n ≥ 0, we have N(1A) = 1N(A).

We have therefore shown that N is a functor.
□

N(A) is referred to as the Moore chain complex or the normalised chain complex of a
simplicial abelian group A [GJ99].

Lemma 5.6. For any simplicial abelian group A, N(A) is a subcomplex of C(A).

Proof. It is clear that for each n, Nn(A) ⊆ Cn(A). Now, for any y ∈ Nn(A), we have
dCn (y) =

∑n
i=0(−1)i∂i(y). However, since y ∈ Nn(A) ⊆ ker(∂i) for 0 ≤ i ≤ n − 1, then

we can simplify this as dCn (y) = (−1)n∂n(y) = dNn (y), as required. Hence N(A) is a
subcomplex of C(A).

□

We can now relate the functors C, D and N .

Lemma 5.7. Let A be a simplicial abelian group. Any element y ∈ Cn(A) is congruent
to an element in Nn(A) modulo Dn(A), i.e. y = x+ z with x ∈ Nn(A) and z ∈ Dn(A).

Proof. Clearly if ∂j(y) = 0 for all j, then y ∈ Nn(A) and so y = y + 0 is our desired
splitting. We prove that if j is the smallest integer such that ∂j(y) ̸= 0 then we can write
y = x+ z as required. We prove this by downwards induction on j.

For our base case, we let j = n. We construct the element y′ = y − σn∂n(y). Clearly,
y = y′+σn∂n(y) and σn∂n(y) ∈ Dn(A). We show that for all 0 ≤ i < n, we have ∂i(y

′) = 0
and so y′ ∈ Nn(A), giving us our desired split. Let i < n. Now:
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∂i(y
′) = ∂i(y − σn∂n(y)),

= ∂i(y)− ∂iσn∂n(y) by linearity,

= ∂i(y)− σn−1∂i∂n(y) by (S3),

= ∂i(y)− σn−1∂n−1∂i(y) by (S1).

However, since n was the smallest integer such that ∂j(y) ̸= 0 and i < n, then ∂i(y) = 0.
Hence ∂i(y

′) = 0 for all i ≤ n− 1. Therefore y′ ∈ Nn(A).
Now, suppose that this holds for all j = n, n− 1, ..., k + 1. If the smallest integer such

that ∂j(y) ̸= 0 is j = k, then we construct the element y′ = y−σk∂k(y). Then for i < k we
have identical calculations as our base case, and ∂i(y

′) = 0. Suppose then that the smallest
integer j such that ∂j(y

′) ̸= 0 is bigger than k. But then by the inductive hypothesis,
y′ = y′′ + σj∂j(y

′) with y′′ ∈ Nn(A). This gives us:

y = y′ + σk∂k(y)

= y′′ + σj∂j(y
′) + σk∂k(y),

with y′′ ∈ Nn(A) and σj∂j(y
′) + σk∂k(y) ∈ Dn(A). Hence by induction we have proved

our claim.
□

Lemma 5.8. Nn(A) ∩Dn(A) = {0}.

Proof. Let y ∈ Nn(A) ∩Dn(A). Clearly, 0 ∈ Nn(A) ∩Dn(A) as 0 ∈ ker(∂i) and 0 = σi(0)

for all i. Now, suppose y ̸= 0. Then y =
∑n−1

j=0 σj(xj) with xj ∈ Cn−1(A), since y ∈ Dn(A).

As y ̸= 0, there exists some j such that σj(xj) ̸= 0. Let 0 ≤ k ≤ n − 1 be the smallest

such integer, so we write y =
∑n−1

j=k σj(xj). We note that ∂ky = 0 as y ∈ Nn(A) ⊆ ker ∂k,
so we also have σk∂ky = 0, and so y − σk∂ky = y. We note that:

σk∂ky = σk∂k

n−1∑
j=k

σj(xj)

 ,

= σk

n−1∑
j=k

∂kσj(xj)

 by linearity,

= σk

∂kσkxk + n−1∑
j=k+1

∂kσj(xj)

 ,

= σk

xk + n−1∑
j=k+1

σj−1∂k(xj)

 by (S3),

= σkxk +
n−1∑
j=k+1

σkσj−1∂k(xj) again, by linearity,

= σkxk +

n−1∑
j=k+1

σjσk∂k(xj) by (S2).

This means that:
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y = y − σk∂ky,

=
n−1∑
j=k

σj(xj)−

σkxk + n−1∑
j=k+1

σjσk∂k(xj)

 ,

=
n−1∑
j=k+1

σj (xj − σk∂k(xj)) ,

=

n−1∑
j=k+1

σj(x
′
j),

which is a contradiction to our assumption on k. Hence, no such y exists and therefore
Nn(A) ∩Dn(A) = {0}, as required. □

Corollary 5.9. Let A be a simplicial abelian group. For each n > 0, there is an isomor-
phism of abelian groups Cn(A) ∼= Nn(A)⊕Dn(A).

Proof. By lemma 5.7 and lemma 5.8, it is clear that for any x ∈ Cn(A) we can define a map
f : Cn(A) → Nn(A)⊕Dn(A) given by writing x uniquely as x = y+z with y ∈ Nn(A) and
z ∈ Dn(A) and letting f(x) = (y, z). This has inverse map g : Nn(A) ⊕Dn(A) → Cn(A)
given by g(y, z) = y + z. This is clearly an isomorphism of abelian groups due to the
uniqueness of the expression and the fact that both Nn(A) and Dn(A) are subgroups of
Cn(A). □

Theorem 5.10. Let A be a simplicial abelian group. C(A) is isomorphic as a chain com-
plex to N(A)

⊕
D(A). Therefore, N(A) is isomorphic as a chain complex to C(A)/D(A).

Proof. Proposition 4.12 tells us that it is enough to prove that both Nn(A) and Dn(A)
are subcomplexes of Cn(A) and that we have level-wise isomorphisms of abelian groups.
These are proved in lemmas 5.4, 5.6 and corollary 5.9. □

We have therefore found our functor from simplicial abelian groups to non-negatively
graded chain complexes of abelian groups. We move on to finding a functor from non-
negatively graded chain complexes of abelian groups to simplicial abelian groups.

5.2. From Non-negatively Graded Chain Complexes to Simplicial Abelian Groups.
This section provides a functor going from Ch+(Ab) to sAb. In order to understand the
structure more clearly, we provide examples of how K works on the lower levels of a chain
complex.

Proposition 5.11. There is a functor K : Ch+(Ab) → sAb:

• On objects C∗ ∈ Ch+(Ab),

Kn(C) =

n⊕
p=0

⊕
η:[n]↠[p]

Cp[η],

where Cp[η] is a copy of Cp which we index with the order-preserving epimorphism
η.

• On morphisms u∗ : C∗ → D∗, we have

Kn(u) = (u0, u1, ..., u1︸ ︷︷ ︸
n times

, u2, ..., u2︸ ︷︷ ︸
(n2) times

, ..., un−1, ..., un−1︸ ︷︷ ︸
( n
n−1) times

, un).
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We show that K is well-defined by showing the image of a non-negatively graded chain
complex is a simplicial abelian group. We prove this by showing that for any object
C∗ ∈ Ch+(Ab), K(C∗) is a contravariant functor from ∆ to Ab. We then show that K
is a functor from Ch+(Ab) to sAb.

First, however, let us unravel the definition.

Example 5.12. To understand whatKn(C) looks like in low degrees, we must understand
surjections from [n] to [p]. We note that in ∆, a surjection is an epimorphism, so we will
write [n]↠ [p] to show a surjection.

• In degree 0 we have just one possible value of p = 0 and thus only one possible
map:

0

0

Hence K0(C) =
⊕0

p=0

⊕
η:[n]↠[p]Cp[η] = C0[ ].

• In degree 1, we can have p = 0 or p = 1, giving us 2 order-preserving surjections:

0

0

1 0

0

1

1

So K1(C) = C0[ ]
⊕
C1[ ].

• In degree 2, we have p ∈ {0, 1, 2} and we get 4 order-preserving surjections:

0

0

1 2 0

0

1 2

1

0

0

1 2

1

0

0

1 2

1 2

Therefore:

K2(C) = C0[ ]
⊕

C1[ ]
⊕

C1[ ]
⊕

C2[ ] ∼= C0

⊕
C2
1

⊕
C2.

We can see from this example that when p = 0, the only map we can get is the map
where everything is sent to 0, and so C0 always appears exactly once as a summand in
Kn(C). Similarly, we see that when p = n, the only order-preserving surjection we can
have is the identity map, and so Cn also always appears exactly once as a summand in
Kn(C). To understand what happens between these, we must understand for fixed n and
p, how many copies of Cp there are in Kn(C).

Lemma 5.13. There are
(
n
p

)
order-preserving surjections [n]↠ [p].

Proof. An order-preserving surjective map [n] ↠ [p] is the same as a partition of (n + 1)
elements into (p+ 1) parts including only adjacent elements. To see this, pick a partition
of {0, 1, 2, ..., n} into (p+1) parts in this way. We send the first part to 0, the second part
to 1,..., the (p + 1)th part to p. This defines a map [n] → [p] which is clearly surjective
and order-preserving:

{ 0, 1︸︷︷︸
0

, 2, 3, 4︸ ︷︷ ︸
1

, 5, 6︸︷︷︸
2

, ..., n− 3, n− 2, n− 1, n︸ ︷︷ ︸
p

.}

Conversely, suppose we had an order-preserving surjection η : [n]↠ [p]. By looking at
η−1(i) for each 0 ≤ i ≤ p, because of the order-preserving property we get a partition of
n, and because this is a surjection, we get (p+ 1) parts:
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{ 0, 1︸︷︷︸
η−1(0)

, 2, 3, 4︸ ︷︷ ︸
η−1(1)

, 5, 6︸︷︷︸
η−1(2)

, ..., n− 3, n− 2, n− 1, n︸ ︷︷ ︸
η−1(p)

}.

There are
(
n
p

)
ways to partition (n+ 1) elements into (p+ 1) parts in this way. This is

because it is the same as picking p elements out of the numbers 0, ..., n as the last element
of the part. We do not need to specify where the (p + 1)th part ends as it ends at the
(n+ 1)th element since it is a surjection. This fully determines the partition.

□

Corollary 5.14. There are
(
n
p

)
copies of Cp in Kn(C).

Proof. This is direct from the previous lemma and the definition of K. □

We can then understand what an element of Kn(C) looks like for general n:

Lemma 5.15.
∑n

p=0

(
n
p

)
= 2n.

Proof. Recall the binomial expansion formula for a, b ∈ R and n ≥ 0:

(a+ b)n =
n∑
p=0

(
n

p

)
an−pbp.

By letting a = b = 1, we see that:

2n =
n∑
p=0

(
n

p

)
.

□

Corollary 5.16. The direct sum decomposition of Kn(C) has 2n summands.

Proof. This follows from the wayK was defined in proposition 5.11, and from corollary 5.14
and lemma 5.15. □

This fits with our calculations from example 5.12. Now that we have got more intuition
for what K is doing, we move onto proving that it is a functor.

Lemma 5.17. Fix C∗ ∈ Ch+(Ab). There is a contravariant functor K̃(C∗) : ∆ → Ab:

• On objects [n] ∈ ∆,

K̃(C∗)[n] =

n⊕
p=0

⊕
η:[n]↠[p]

Cp[η].

• On morphisms in ∆, α : [m] → [n] it is enough to specify K(C∗)(α)|η for each
surjection η : [n] ↠ [p]. Find the unique epi-monic factorisation of ηα = ϵµ, as
displayed in the commutative diagram below.

[n] [m]

[q] [p]

µ

α

η

ϵ

Now:
– if q = p, then we take K(C∗)(α)|η to be the natural association of Cp[η] with
Cp[µ].

– If p = q + 1 and ϵ = ϵp, then we take K(C∗)(α)|η = dp : Cp → Cp−1.
– Otherwise, we set K(C∗)(α)|η = 0.
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Proof. We must show that K(C∗) is well-defined by showing that Kn(C∗) is an abelian
group for each n and that for any morphism α, K(C∗)(α) is a homomorphism of abelian
groups. We then show that K(C∗) is cofunctorial.

The former follows directly from the definition of chain complexes, which tells us that
each Cn[η] is an abelian group, and the fact that the direct sum of abelian groups is again
an abelian group. Also, K(C∗)(α) is a group homomorphism as it is defined to be made up
of the zero map, an identity map, and the map d, all of which are group homomorphisms.

Now, let α : [n] → [m] and β : [m] → [l]. We show that K satisfies (CF1) and (CF2).

(CF1) Fix some order-preserving surjection η : [l] ↠ [p]. Let η(βα) = ϵη′ be the unique
epi-monic factorisation of βα:

(1)

[n] [m] [l]

[q′] [p] .

η′

α β

η

ϵ

Also, let ηβ = ρµ be the epi-monic factorisation of ηβ:

(2)

[m] [l]

[q] [p] .

µ

β

η

ρ

We can also find an epi-monic factorisation of µα = ικ:

(3)

[n] [m]

[r] [q] .

κ

α

µ

ι

We can glue (2) and (3) together by lemma 2.39 to get the following commutative
diagram.

(4)

[n] [m] [l]

[r] [q] [p] .

κ

α β

µ η

ι ρ

Since the composition of two monomorphism is a monomorphism, we see that
(ρι)κ is an epi-monic factorisation of ηβα. Since epi-monic factorisations are
unique, then we must have κ = η′, ρι = ϵ and r = q′.

If q′ = p, then K(C)(βα)|η is by definition the natural association of Cp[η] with
Cp[η

′]. But if q′ = p then we must also have q = p, as monics in ∆ must either be
the identity of have domain less than or equal to the codomain, which is not possible
in this situation. Therefore, by considering (2) we see thatK(C)(β)|η is the natural
association of Cp[η] with Cp[µ], and that K(C)(α)|µ is the natural association of
Cp[µ] with Cp[η

′]. Hence K(C)(α)|µK(C)(β)|η is the natural association of Cp[η]
with Cp[η

′] and so

K(C)(βα)|η = K(C)(α)|µK(C)(β)|η.
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If p = q′ + 1 and ϵ = ϵp then

K(C)(βα)|η = dp : Cp[η] → Cp−1.

In this case, by looking at (4), we see that either q = q′ + 1 or q = q′. In the
former case, by looking at (3), we see that K(C)(α)|µ = dp : Cp[µ] → Cp−1. But
then q = p and so K(C)(β)|η is the natural identification of Cp[η] with Cp[µ].
Hence K(C)(α)|µK(C)(β)|η = d : Cp[η] → Cp−1 = K(C)(βα)|η. The latter case
is similar.

Otherwise, K(C)(βα)|η = 0. If q ̸= p − 1 or q = p − 1 but ρ ̸= ϵp, then
K(C)(β)|η = 0 and so 0 = K(C)(α)|µK(C)(β)|η = K(C)(βα)|η = 0. Similarly,
if q′ ̸= q − 1 or q = q − 1 but ι ̸= ϵq, then we get 0 = K(C)(α)|µK(C)(β)|η =
K(C)(βα)|η = 0.

Note that if either q = p or q′ = q then we must get a situation we have described
before.

This only leaves us with one more type: if q = p− 1 and q′ = q − 1 = p− 2:

[n] [m] [l]

[p− 2] [p− 1] [p] .

κ

α β

µ η

ι=ϵq ρ=ϵp

In this case, we have K(C)(α)|µ = dp−1 : Cp−1 → Cp−2 and K(C)(β)|η = dp :
Cp → Cp−1, and so

K(C)(α)|µK(C)(β)|η = dp−1 ◦ dp = 0 = K(C)(βα)|η,

since d is a differential.
Hence we have shown that for any surjection η, we have

K(C)(βα)|η = K(C)(α)|µK(C)(β)η,

where µ is determined by η. This gives us the result we require:

K(C)(βα) = K(C)(α)K(C)(β).

(CF2) We note that 1K(C∗)[n] = (1C0 ,1C1 , ...,1C1︸ ︷︷ ︸
n times

,1C2 , ...,1C2︸ ︷︷ ︸
(n2) times

, ...,1Cn−1 , ...,1Cn−1︸ ︷︷ ︸
( n
n−1) times

,1Cn).

Now, the epi-monic factorisation of η1[n] is 1[p]η. So we are in the case where
q = p and so we obtain the natural association of Cp[η] with Cp[η], which is the
identity. Therefore, we get the identity for every surjection, and

K(C∗)(1[n]) = (1C0 , 1C1 , ...,1C1︸ ︷︷ ︸
n times

,1C2 , ...,1C2︸ ︷︷ ︸
(n2) times

, ...,1Cn−1 , ...,1Cn−1︸ ︷︷ ︸
( n
n−1) times

,1Cn) = 1K(C∗)[n],

as required.

Therefore we have shown that K(C) is a contravariant functor, as required. □

Proposition 5.18. There is a functor K : Ch+(Ab) → sAb, which we define level-wise:

• On objects C∗ ∈ Ch+(Ab),

Kn(C∗) = K̃(C∗)[n].

• On morphisms u∗ : C∗ → D∗, we define

Kn(u) = (u0, u1, ..., u1︸ ︷︷ ︸
n times

, u2, ..., u2︸ ︷︷ ︸
(n2) times

, ..., un−1, ..., un−1︸ ︷︷ ︸
( n
n−1) times

, un).
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Proof. By lemma 5.17, for any non-negatively graded chain complex C∗, K(C∗) is a sim-
plicial abelian group. To show that this is a well-defined map, we must also show that for
any chain map u∗, that K(u∗) is a map of simplicial abelian groups i.e a natural trans-
formation. To show this, we must show that given a chain map u∗ : C∗ → D∗ and any
morphism α : [n] → [m] in ∆, the diagram:

Kn(C∗) Kn(D)

Km(C) Km(D),

K(C∗)(α)

Kn(u∗)

K(D∗)(α)

Km(u∗)

commutes. This follows from the fact that u∗ commutes with the maps d, the zero map
and the identity map which make up K(C∗)(α). Hence K is well-defined.

Now, to prove functoriality, let C∗, D∗, E∗ be non-negatively graded chain complexes,
and let u∗ : C∗ → D∗, v∗ : D∗ → E∗ be chain maps. We show (F1) K(v∗u∗) = K(v∗)K(u∗)
and (F2) K(1C∗) = 1K(C∗) and are satisfied.

(F1) By definition:

Kn(v∗u∗) = (v0 ◦ u0, v1 ◦ u1, ..., v1 ◦ u1︸ ︷︷ ︸
n times

, ..., vn−1 ◦ un−1, ..., vn−1 ◦ un−1︸ ︷︷ ︸
( n
n−1) times

, vn ◦ un)

= (v0, v1, ..., v1︸ ︷︷ ︸
n times

, ..., vn−1, ..., vn−1︸ ︷︷ ︸
( n
n−1) times

, vn) ◦ (u0, u1, ..., u1︸ ︷︷ ︸
n times

, ..., un−1, ..., un−1︸ ︷︷ ︸
( n
n−1) times

, un)

= K(v∗)K(u∗).

(F2) We note that 1C∗ = (1C0 ,1C1 ,1C3 , ...) and hence for each n,

K(1Cn) = (1C0 ,1C1 , ...,1C1︸ ︷︷ ︸
n times

, ...,1Cn−1 , ...,1Cn−1︸ ︷︷ ︸
( n
n−1) times

,1Cn) = 1K(Cn),

by corollary 5.14. Therefore, K(1C∗) = 1K(C∗), as required.

Therefore we have shown that K is a functor. □

This proves proposition 5.11. We can also reformulate this in order to understand the
face and degeneracy maps.

Corollary 5.19. K(C∗) is a simplicial abelian group where the face maps are given by
∂i = K(C∗)(ϵi) and the degeneracy maps are given by σi = K(C∗)(ηi).

5.3. The Equivalence. To finish off the proof of the Dold-Kan correspondence, we must
prove that NK is naturally isomorphic to 1Ch+(Ab) and KN is naturally isomorphic to
1sAb.

5.3.1. NK is naturally isomorphic to 1Ch+(Ab). We prove a couple of lemmas which make
this result a straightforward corollary of theorem 5.10.

Lemma 5.20. For 0 ≤ p ≤ n− 1, for any η : [n]↠ [p], we have

Nn (Cp[η]) = 0 in Nn(KC).

Proof. Let p ̸= n. For arbitrary η : [n] ↠ [p], we can find a factorisation of η into
degeneracy maps: η = ηi1ηi2 ...ηit . The epi-monic factorisation of η1[p] is 1[n]η, and so

K(C)(η)|1[p] is the natural association of Cp
[
1[p]
]
with Cp[η], by definition of K. But
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also, by the contravariance of K(C):

K(C)(η) = K(C)(ηi1ηi2 ...ηit)

= K(C)(ηit)K(C)(ηit−1)...K(C)(ηi1)

= σitσit−1 ...σi2σi1 .

Therefore, we have Cp[η] = σitσit−1 ...σi2σi1Cp
[
1[p]
]
, and so Cp[η] ⊆ Dn(K(C∗)). By

lemma 5.8, Nn(A) ∩Dn(A) = {0}, and so Nn(Cp[η]) = 0, as required.
□

The remaining case to look at is when p = n. In this case, the only possible order-
preserving surjection [n]↠ [n] is the identity map, 1[n].

Lemma 5.21.

Nn

(
Cn
[
1[n]
])

= Cn
[
1[n]
]
in Nn(KC).

Proof. Consider ∂i = K(C)(ϵi). By the way we have defined this, ∂i = 0 unless i = n.
Therefore, Cn

[
1[n]
]
⊆ Nn(K(C∗)). It is clear that Nn(K(C∗)) ⊆ Cn

[
1[n]
]
, by definition

of N and K. □

Proposition 5.22. Let C∗ be a chain complex. Then NK(C∗) is isomorphic as a chain
complex to C∗.

Proof. By lemma 5.21 and corollary 5.20, Nn(KC) = Cn
[
1[n]
]
, so Nn(K(C)) is a non-

negatively graded sequence of abelian groups. Its differential is given in degree n by
d̃n = (−1)n∂n = (−1)nK(C)(ϵn). As Nn(KC) = Cn

[
1[n]
]
, we can look at this restricted

to 1[n]. We obtain the epi-monic factorisation ϵn1[n] = 1[n−1]ϵn as displayed below:

[n− 1] [n]

[n− 1] [n] .

1[n−1]

ϵn

1[n]

ϵn

Hence K(C)(ϵn) = dn : Cn → Cn−1. Therefore, d̃n = (−1)ndn. Clearly d̃2 = 0, so
NK(C∗) is a chain complex. This chain complex is isomorphic to C∗ by the chain map
f∗ : C∗ → NK(C∗) given by

fn =

{
1Cn if n is congruent to 0 or 3 mod 4,

−1Cn otherwise.

This is a well-defined chain map as it is clear that the diagram:

... C4k+3 C4k+2 C4k+1 C4k ...

... C4k+3 C4k+2 C4k+1 C4k ...

d4(k+1)

1C4k+3

d4k+3

−1C4k+2

d4k+2

−1C4k+1

d4k+1 d4k

1C4k

d4(k+1) −d4k+3 d4k+2 −d4k+1 d4k

commutes. Moreover, this map is self inverse as f2n = 1Cn for all n, so is therefore an
isomorphism between the chain complexes. Hence, NK(C∗) ∼= C∗ as required. We call
this isomorphism ΦC .

□

Lemma 5.23. For any chain map u∗, NK(u∗) = u∗.
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Proof. Let u∗ be a chain map. Then, by definition, for each n we have

Kn(u∗) = (u0, u1, ..., u1︸ ︷︷ ︸
n times

, u2, ..., u2︸ ︷︷ ︸
(n2) times

, ..., un−1, ..., un−1︸ ︷︷ ︸
( n
n−1) times

, un).

By proposition 5.22, NKn(u∗) := K(u∗)|Nn(K(C)) = K(u∗)|Cn = un. It follows that
NK(u∗) = u∗. □

Corollary 5.24. NK is naturally isomorphic to 1Ch+(Ab).

Proof. We construct the natural isomorphism Φ object-wise by the isomorphism given by
proposition 5.22. Given u∗ : C∗ → D∗ the diagram

NK(C) 1Ch+(Ab)(C)

NK(D) 1Ch+(Ab)(D),

NK(u∗)

∼
ΦC

1Ch+(Ab)(u∗)

∼
ΦD

commutes by lemma 5.23. Hence by definition of natural isomorphism, NK is naturally
isomorphic to 1Ch+(Ab).

□

5.3.2. KN is naturally isomorphic to 1sAb. This proof is inspired by the proofs given in
([GJ99], III prop. 2.2) and in ([Wei95], 8.4.4).

Proposition 5.25. Let A be a simplicial abelian group. Then KN(A) is isomorphic to
A as a simplicial abelian group.

Proof. We define a map by ΨA : KN(A) → A by defining restrictions of it at the nth level
corresponding to surjections η : [n]↠ [p]. We define ΨA

n |η by the composite:

Np(A) Ap An.

ΨA
n |η

A(η)

First we show that ΨA is a simplicial map, which is a natural transformation. In ∆, let
α : [m] → [n], η : [n]↠ [p], and let ϵη′ be the epi-mono factorisation of ηα, so η′ : [m]↠ [q]
and ϵ : [q]↣ [p] such that:

[m] [n]

[q] [p]

η′

α

η

ϵ

commutes. By applying the contravariant functor A to this which reverses arrows, we
get the following diagram, which commutes by lemma 2.41.

(5)

Am An

Aq Ap

A(α)

A(η′) A(η)

A(ϵ)

Furthermore, the diagram:
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(6)

Np(A) Ap

Nq(A) Aq

Np(A(ϵ))

i

A(ϵ)

i

commutes due to the fact that A(ϵ)|Np(A) = Np(ϵ) by definition.
Therefore, the diagram:

Np(A) Ap An

Nq(A) Aq Am

ΨA|η

i

Np(ϵ) A(ϵ)

A(η)

A(α)

ΨA|η′

i A(η′)

commutes by gluing together the commutative squares given in (5) (rotated) and (6).
This is enough to show that ΨA is a simplicial map from KN(A) to A, by the fact that
maps out of a direct sum are defined by maps on each part.

Next, we prove that ΨA
n is an isomorphism of abelian groups for all n. We do this

by induction. For our base case, we note that for n = 0, the only possible map we can
consider is 1[0] : [0] ↠ [0]. Moreover, N0(A) := A0. Hence ΨA

0 (N(A)) = A0, so we have
our required isomorphism.

Now assume that ΨA
n is an isomorphism at every degree less than n. By restricting ΨA

n

to 1[n], which is the map:

Nn(A) An An.

ΨA
n |1[n]

A(1[n])

we see that Nn(A) ⊆ Im(ΨA
n ).

Consider an arbitrary degeneracy σjx ∈ Dn(A). Then x ∈ An−1. Let y =
(
ΨA
n−1

)−1
(x),

which exists by inductive hypothesis. As Ψ is a simplicial map, it commutes with face and
degeneracy maps of A, so we have:

σjx = σjΨ
A
n−1(y) = ΨA

n (σjy),

and so σjx ∈ Im(ΨA
n ). As this was an arbitrary element of Dn(A), it follows that

Dn(A) ⊆ Im(ΨA
n ). Hence Nn(A)

⊕
Dn(A) ⊆ Im(ΨA

n ). By theorem 5.10, it follows that
An ⊆ Im(ΨA

n ). Therefore, Ψ
A
n is surjective.

It remains to show that ΨA
n is injective, as this will show that it is an isomorphism by

lemma 2.25. We write elements of KNn(A) as (xη), in which each part xη0 is labelled by
some surjection η : [n] ↠ [p] with 0 ≤ p ≤ n. We show that ΨA

n |η(xη) = 0 ⇐⇒ xη = 0.
This will show ker

(
ΨA
n

)
= 0 and that ΨA

n is injective.

Fix an η : [n]↠ [p] and suppose that ΨA
n |η(xη) = 0. Recall from lemma 2.20 that there

exists a section µ : [p] → [n] such that ηµ = 1[p]. Then we have:
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0 = ΨA
n |η(xη)

= A(η)(xη)

= A(µ)A(η)(xη) applying A(µ) to both sides,

= A(ηµ)(xη) by (CF1),

= A
(
1[p]
)
(xη) as µ was the section of η,

= xη by (CF2).

Therefore ΨA
n |η(xη) = 0 ⇐⇒ xη = 0 and so ΨA

n is injective. Hence ΨA
n is an isomorphism,

and by induction we have proved that it is an isomorphism for every n ≥ 0. Hence ΨA is
a natural isomorphism, so KN(A) is isomorphic to A as a simplicial abelian group. □

Corollary 5.26. KN is naturally isomorphic to 1sAb.

Proof. We provide a natural transformation Ψ : KN 1sAb defined object-wise by

ΨA : KN(A) → A, as given in proposition 5.25. The diagram:

KN(A) 1sAb(A)

KN(B) 1sAb(B),

KN(f)

∼
Ψ(A)

1sAb(f)

∼
Ψ(B)

commutes by the definition of natural transformation applied to ΨA and ΨB. Hence Ψ
is itself is a natural transformation, in which each component is an isomorphism, and is
therefore a natural isomorphism.

□

We have therefore proven the Dold-Kan Correspondence.

5.4. Examples. Explicit examples of the Dold-Kan correspondence in action quickly be-
come very technical and mostly an exercise in tracking combinatorial information. We
give here some simple examples.

Example 5.27. Recall Z∆1, the simplicial abelian group discussed in example 3.28. For
an element a{0, 1}+ b{0, 0}+ c{1, 1} ∈ Z∆1

1, we have

∂0(a{0, 1}+ b{0, 0}+ z{1, 1}) = a∂0{0, 1}+ b∂0{0, 0}+ c∂0{1, 1} = a{1}+ b{0}+ c{1},

and similarly

∂1(a{0, 1}+ b{0, 0}+ c{1, 1}) = a{0}+ b{0}+ c{1}.
It follows that, NZ∆1

0 = Z∆1
0 and NZ∆1

1 = ker ∂0 = {a{0, 1}− a{1, 1} : a ∈ Z}. From the
definition, KNZ∆1

0 = Z∆1
0. Moreover,

KNZ∆1
1 =

1⊕
p=0

⊕
η:[1]↠[p]

NZ∆1
p[η]

= NZ∆1
0[ ]

⊕
NZ∆1

1[ ],

as was worked out in example 5.12. Elements in here are of the form

(x{0}+ y{1}, a{0, 1} − a{1, 1}).

for x, y, a ∈ Z. We show that ΨZ∆1

1 sends this to an element of Z∆1
1. We calculate the

restrictions to the maps and :
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NZ∆1
0 Z∆1

0 Z∆1
1,

ΨZ∆1

1 |

where the map Z∆1
0 → Z∆1

1 is σ0 as there is no other choice. Also, we have:

NZ∆1
1 Z∆1

1 Z∆1
1.

ΨZ∆1

1 |

Hence

ΨZ∆1

1 (x{0}+ y{1}, a{0, 1} − a{1, 1}), = σ0(x{0}+ y{1}) + a{0, 1} − a{1, 1},
= x{0, 0}+ y{0, 1}+ a{0, 1} − a{1, 1},
= p{0, 1}+ q{0, 0}+ r{1, 1} ∈ Z∆1

1,

for p = a + y, q = x and r = −a. It is clear that there is a bijection between these
elements, uniquely determined by choosing 3 parameters. Hence we can see the natural
isomorphism of these sets.

We also have an example in the other direction.

Example 5.28. Recall example 4.14, which shows the non-negatively graded chain com-
plex C∗ given by

... Z/8Z Z/8Z Z/8Z 04 4 4

Now, KC0 = Z/8Z, KC1 = C0[ ]
⊕
C1[ ] = Z/8Z[ ]

⊕
Z/8Z[ ],

K2(C) = Z/8Z[ ]
⊕

Z/8Z[ ]
⊕

Z/8Z[ ]
⊕

Z/8Z[ ],

and so on. As explained in proposition 5.22, applying N to these picks out the top bit of
these. Hence

NKC1 = Z/8Z[ ] ∼= Z/8Z,

NKC2 = Z/8Z[ ] ∼= Z/8Z.

This is therefore the non-negatively graded chain complex

... Z/8Z Z/8Z Z/8Z 0
−4 4 −4

which is isomorphic as a chain complex to C∗.

5.5. The relationship between homology and homotopy. One important result
arising from the Dold-Kan correspondence is the following.

Proposition 5.29. Let A be a simplicial abelian group. Under the Dold-Kan correspon-
dence, π∗(A) ∼= H∗(NA).

Proof. Recall that for a simplicial abelian group A, Z̃n(A) =
⋂n
i=0 ker(∂i : An → An−1),

and for a chain complex C, Zn(C) = ker (dn : Cn → Cn−1). It is clear from these definitions
that Zn(NA) = ker(dn : NAn → NAn−1) = ker ((−1)n∂n : NAn → NAn−1) , and so

x ∈ Zn(NA) ⇐⇒ x ∈
⋂n
i=0 ker(∂i : An → An−1) = Z̃n(A). Hence, Zn(A) = Z̃n(A)
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Moreover, Bn(NA) = img(dn+1 : Nn+1A → NnA), so x ∈ Bn(NA) iff x = dn+1(y) for
some y ∈ Nn+1A. This is the same as saying x = (−1)n+1∂n+1y, and so

∂i(y) =


0 if i < n

0 if i = n

(−1)n+1x if i = n+ 1.

Therefore, we can see that x ∈ Bn(NA) ⇐⇒ x ∼ 0.
Now, consider the quotient map

ξ : Z̃n(A) → Z̃n(A)/∼.

This map is clearly surjective, as for any class [z] ∈ Z̃n(A)/∼, we have ξ(z) = [z]. Hence,
by the first isomorphism theorem we have

Z̃n(A)/ ker ξ ∼= Z̃n(A)/∼.
Now, ker ξ = {x ∈ Z̃n(A) : x ∼ 0} = Bn(NA). Hence,

πn(A) := Z̃n(A)/∼ ∼= Z̃n(A)/Bn(NA) = Zn(NA)/Bn(NA) =: Hn(NA).

□

Example 5.30. Let G be an abelian group. Consider the chain complex G[−k] with G
at level k, and 0 everywhere else.

... 0 G 0 ...

Then we call the simplicial abelian group K(G[−n]) an Eilenberg-MacLane space of type
K(G,n). This has the special property that

πk (K (G[−n])) =

{
G if k = n,

0 otherwise.

We calculate this through the homology. Firstly, Nk (K (G[−n])) = G[−n] as every
element is in the kernel of each face map (which are all necessarily zero maps). From this,
it is clear that Zn (NKG[−n]) = G and Bn (NKG[−n]) = {0}, so Hn (NKG[−n]) = G.
By proposition 5.29, this shows the result for homotopy groups.

Eilenberg-MacLane spaces are important in topology; homology, cohomology and ho-
motopy of spaces can be captured with maps to and from an Eilenberg-MacLane space.

6. A Quillen Equivalence

The notion of an equivalence of categories is somewhat weaker than the notion of an
isomorphism of categories: indeed, for an equivalence of categories we only need there to

exist functors F : C D : G, such that FG (respectively GF ) is naturally isomorphic

to the identity on D (resp. C), whereas an isomorphism of categories requires FG (re-
spectively GF ) to be equal to the identity on D (resp. C). With our functors, we clearly
do not have an equality, and so we might guess that asking for these categories to be
isomorphic is asking for too much. However, there are other, more structured notions of
equivalence between categories. One kind of equivalence we might be interested in is one
that says two categories have the same homotopical information in some way. One such
equivalence is called a Quillen equivalence; this is a relationship between two categories
C and D that induces an equivalence of categories between associated categories called
the homotopy categories Ho(C) and Ho(D). A Quillen equivalence allows us to study the
homotopy theory of C through the homotopy theory of D and vice versa. This concept
was first introduced in 1967 by D. Quillen [Qui67].
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In fact, the Dold-Kan correspondence can be upgraded to a Quillen equivalence. This
was first proven in [Qui67] and is the content of this chapter. In order to prove this, and
indeed for the statement above to have any meaning, we need to put a model structure
upon these categories. This gives the way in which this equivalence is ‘more structured’.
We then need to show that our functors K and N preserve this extra structure.

6.1. Model Categories. A model category is a context in which we can do abstract
homotopy theory in; in fact it was developed by Quillen as an axiomatic framework for
homotopy theory [Qui67]. One idea that turns out to be useful to isolate is maps which
have lifting properties against other maps; this is inspired from homotopy theory in the
topological context [Str21, Hat01].

Definition 6.1. Let i : A→ B and p : X → Y in a category C. The map i is said to have
the left lifting property against p if for any maps f : A → X and g : B → Y such that
g ◦ i = p ◦ f , there exists an h : B → X such that h ◦ i = f and p ◦ h = g. In other words,
there exists an h making the following diagram commute.

A X

B Y

i

f

p

g

∃h

Equivalently, p has the right lifting property against i.

Definition 6.2. Let X and Y be simplicial sets. A simplicial map p : X → Y is called a
Kan fibration if it has the right lifting property against the inclusion of all horns Λnk ↪→ ∆n.
More precisely, for any n ≥ 1 and 0 ≤ k ≤ n, and for any maps f : Λnk → X and g : ∆n → Y
such that p ◦ f = g ◦ i, there exists a map h : ∆n → X making the following diagram
commute.

Λnk X

∆n Y

i

f

p

g

∃h

Remark 6.3. Note the condition n ≥ 1 in this definition. For n = 0, we have Λ0
0 = ∆0,

and so this condition would hold for every map.

Example 6.4. Recall the definition of Kan complexes from definition 3.34. This can now
be rephrased by saying that X is a Kan complex if and only if the map X → {∗} is a Kan
fibration. We can see this by comparing the commutative diagrams below, and by noting
that any map to the one-point simplicial set must be the zero map.

Λnk X

∆n {∗}

i

f

0

0

∃h
Λnk X

∆n

Definition 6.5. Let C be a category. A weak factorisation system on C is a pair (L,R)
of classes of morphisms of C such that:

(WF1) Every morphism f in mor(C) can be factorised as a morphism in L followed by a
morphism in R.

(WF2) L is the class of morphisms in C that have the left lifting property against every
morphism in R.
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(WF3) R is the class of morphisms in C that have the right lifting property against every
morphism in L.

Definition 6.6. Let C be a category. A model structure on C is a choice of three distin-
guished classes of morphisms in C:

• A class called Cofibrations Cof ⊂ mor(C).
• A class called fibrations Fib ⊂ mor(C).
• A class called weak equivalences W ⊂ mor(C).

These must satisfy the axioms:

(M1) Any isomorphism f in mor(C) is contained in W.
(M2) The 2-out-of-3 property : given a composable pair of morphisms f : X → Y ,

g : Y → Z, if any two of of f, g and gf are in W, then so is the third.
(M3) Both (Cof ∩W,fib) and (Cof,Fib ∩W) are weak factorisation systems on C.
The morphisms in Fib ∩ W are called trivial fibrations. Similarly, the morphisms in

Cof ∩W are called trivial cofibrations.

This definition differs from the definition given in [Hov99] and has less conditions; it
has been shown since, for example in [Rie09], that these conditions given here imply the
extra ones in [Hov99]. As we will not need them for the theory we develop, we shall leave
these out. We can make one more simplification:

Lemma 6.7. Let C be a category with a model structure. The class of weak equivalences
and fibrations fully determines the class of cofibrations.

Proof. Given W and Fib, we can define a class of morphisms to be the morphisms that
have the left lifting property against every trivial fibration. By (M3), these are precisely
the cofibrations. □

Definition 6.8. A model category is a category M which is complete and cocomplete
equipped with a model structure.

Example 6.9. Let C be any complete and cocomplete category. There is always a model
structure called the trivial model structure on C, in which we let the weak equivalences be
just the isomorphisms, and let the cofibrations and fibrations be all the morphisms in the
category. In this case, (M1) is clearly satisfied, (M2) follows from some basic properties
of isomorphisms. For (M3) we show that (isomorphisms, maps) is a weak factorisation
system on C. Let p : X → Y be a morphism in C. Then p = 1Xp, so (WF1) is satisfied.
Moreover, for diagrams of the form:

A X

B Y,

i

f

p

g

i−1f

the map i−1f : B → X exists, giving the left and right lifting properties required in
(WF2) and (WF3). The proof that (maps, isomorphisms) is a weak factorisation system
is similar. We can always consider C a model category with this model structure.

Definition 6.10. Let M be a model category, and denote the initial object by 0 and the
terminal object by 1. An object X ∈ M is said to be a fibrant if the unique map X → 1 is
a fibration. Similarly, we say that X is cofibrant if the unique map 0 → X is a cofibration.

We can define the notion of homotopy in a model category as follows. There are many
equivalent formulations of this construction, for example in [Hov99, Rie14]; the following
is an adaptation of [ZG67].
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Definition 6.11. A finite zig-zag in a category C is a string of morphisms in C of the form

C0 C1 C2 ... Cn−1 Cn

The idea is that we would like to invert weak equivalences and make them isomorphisms.
We do this by imposing an equivalence relation on finite zig-zags.

Definition 6.12. Let M be a model category, and consider the collection of finite zig-
zags in M in which the backwards morphisms must be from W. We define the following
relations.

• Adjacent morphisms in the same direction may be composed.

• Adjacent pairs Mk−1 Mk Mk+1
w v and Mk−1 Mk Mk+1

w v for w, v ∈
W may be removed.

• Identities pointing forwards or backwards can be removed.

This forms an equivalence relation. Morphisms which are connected by a finite zig-zag
are called homotopical.

Definition 6.13. Let M be a model category. We define Ho(M) for the category whose
objects are the objects in M which are both fibrant and cofibrant, and whose morphisms
are classes of maps which are homotopical to one another. By [Hov99], this is a well-defined
category.

Example 6.14. If a complete and cocomplete category C is equipped with the trivial
model structure, then we have Ho(C) ∼= C, as all weak equivalences are already invertible,
and all objects in C are both fibrant and cofibrant (since all morphisms are both fibrations
and cofibrations).

Example 6.15. When we work out the details in the category Top, this recovers our
usual notion of the topological homotopy category which is given, for example, in [Str21].
This result is proven in [Hov99].

In order to extend the Dold-Kan correspondence to a Quillen equivalence, we must
specify model structures on the categories Ch+(Ab) and sAb. The proofs that the fol-
lowing give model structure are long and require a lot of extra theory to do with model
categories; in the interest of space constraints these proofs are left out of this project and
are referenced instead.

6.1.1. The Projective Model Structure on Ch+(Ab). There are many model structures on
Ch+(Ab); the most commonly used are the injective and projective model structures. We
will use the latter to form our Quillen equivalence.

Proposition 6.16. The following gives a model structure on Ch+(Ab): a chain map
u∗ : C∗ → C ′

∗ is:

• A weak equivalence if u∗ induces an isomorphism in homology, i.e.

Hk(u) : Hk(C∗) → Hk(C
′
∗)

is an isomorphism of groups for every k ≥ 0.
• A fibration if uk : Ck → C ′

k is an epimorphism in each positive degree.
• A cofibration if uk : Ck → C ′

k is a monomorphism whose cokernel is a projective
abelian group for all k.

This is called the projective model structure on Ch+(Ab).

This was originally proven to be a model structure in [Qui67], but the result is proved
using more modern machinery in ([GS07], theorem 1.5).
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Remark 6.17. We note that we have not defined the notion of a monomorphism whose
cokernel is a projective abelian group in this project. However, by lemma 6.7, we know
that these are must be the morphisms with the left lifting property against the trivial
fibrations— and indeed this is more or less the definition of them. In a longer project,
it would be interesting to look at this further, but as we do not need this concept we
reference ([Wei95], 2.2).

6.1.2. The Classic Model Structure on sAb. It has been shown that there are an infinite
number of model structures on sSet [Bek10]. This is perhaps surprising when we consider
that there are only nine model structures on Set [Bal21], and only one on CAT [SP12],
which has functors giving an equivalence of categories as the weak equivalences. The
model structure we will be interested in is called the classical model structure on sAb.
This is proven to be a model structure in ([GJ99], Theorem III.2.8).

Proposition 6.18. The following gives a model structure sAb: a simplicial map f : A→
B is:

• A weak equivalence if f induces an isomorphism in homotopy groups i.e.

πk(f) : πk(A) → πk(B)

is an isomorphism for every k ≥ 0.
• A fibration if f : A → B is a Kan fibration when considered as a map between
simplicial sets.

• A cofibration if f : A→ B is a monomorphism of simplicial sets i.e. an injection
in every degree.

This is called the classical model structure on sAb.

6.2. Adjoint Pairs. In this section we focus on the notion of an adjoint pair of functors.
This can be thought of as a weak form of an equivalence of categories; indeed, every
equivalence of categories induces an adjoint pair but the converse is not true.

Definition 6.19. Let C,D be categories. Suppose we have functors:

L : C D : R

such that for all A in C and B in D we have a natural bijection of sets

HomD(LA,B) ∼= HomC(A,RB).

Then we say L is left adjoint to R (equivalently R is right adjoint to L). In this case, we
say (L,R) is an adjoint pair.

Example 6.20. The naming of adjoint pairs was inspired by the concept of adjoints in an
inner product space. Recall the definition: let A be a linear operator on an inner product
space V with inner product ⟨−,−⟩. Then the adjoint operator A∗ is the unique linear
map such that ⟨Ax, y⟩ = ⟨x,A∗y⟩, for all x, y ∈ V . This definition bares resemblance to
the definition of adjoint pair.

Example 6.21. Let U : Ab → Set be the forgetful functor, and Z be the free functor.
Then

Z : Set Ab : U

form an adjoint pair, (Z, U). To see this, first consider a function U(A) → X. There
is a unique way to linearly extend this to a abelian group homomorphism A → Z{X}.
Conversely, given an abelian group homomorphism A → Z{X}, it is enough to specify
what this map does to the generators of Z{X} which is precisely X. This gives a function
U(A) → X, which completes the bijection required.

Example 6.22. (| − |, S∗) is an adjoint pair. A proof of this can be found in ([GJ99],
proposition 2.2, page 7).
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Proposition 6.23. (K,N) is an adjoint pair, i.e.

HomsAb(KC,A) ∼= HomCh+(Ab)(C,NA)

is a bijection of sets.

Proof. Recall that we have natural isomorphisms

ΨA : KNA A :
(
ΨA
)−1

,
∼

ΦC : NKC C :
(
ΦC
)−1∼

which we constructed in corollaries 5.24 and 5.26. We form maps

Θ : sAb(KC,A) Ch+(Ab)(C,NA) : Λ,

and show that these are mutually inverse.

For f : KC → A, we define Θ(f) : C → NA by Θ(f) = Nf ◦
(
ΦC
)−1

:

C NKC NA.
(ΦC)

−1
Nf

For g : C → NA, we define Λ(g) : KC → A by Λ(g) = ΨA ◦Kg ◦KΦC ◦
(
ΨKC

)−1
:

KC KNKC KC KNA A.
(ΨKC)

−1

KΦC Kg ΨA

Now,

(Λ ◦Θ)(f) = Λ
(
Nf ◦

(
ΦC
)−1
)

= ΨA ◦K
(
Nf ◦

(
ΦC
)−1
)
◦KΦC ◦

(
ΨKC

)−1

= ΨA ◦KNf ◦K
(
ΦC
)−1

) ◦KΦC ◦
(
ΨKC

)−1
by functoriality,

= ΨA ◦KNf ◦
(
ΨKC

)−1
.

We note that by naturality of Ψ, the diagram

KNKC KC

KNA A,

KNf

ΨKC

f

ΨA

commutes, so ΨA ◦KNf = f ◦ΨKC . Hence

(Λ ◦Θ)(f) = ΨA ◦KNf ◦
(
ΨKC

)−1

= f ◦ΨKC ◦
(
ΨKC

)−1

= f,

and so Λ ◦Θ = 1sAb(KC,A).
On the other hand,
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(Θ ◦ Λ) (g) = Θ
(
ΨA ◦Kg ◦KΦC ◦

(
ΨKC

)−1
)

= N
(
ΨA ◦Kg ◦KΦC ◦

(
ΨKC

)−1
)
◦
(
ΦC
)−1

= N
(
ΨA
)
◦NKg ◦NKΦC ◦N

((
ΨKC

)−1
)
◦
(
ΦC
)−1

by functoriality.

Now, thinking level-wise with, we note that Nn

(
ΨA
)
= ΨA|Nn(A) = 1NKNAn . Similarly,

Nn

((
ΨKC

)−1
)
= 1Nn(A). Therefore,

(Θ ◦ Λ)(g) = NKg ◦NKΦC ◦
(
ΦC
)−1

Moreover, in lemma 5.23 we showed that NKu = u for all chain maps u, so

(Θ ◦ Λ)(g) = g ◦ ΦC ◦
(
ΦC
)−1

= g

and so Θ ◦ Λ = 1Ch+(Ab)(C,NA). Hence

HomsAb(KC,A) ∼= HomCh+(Ab)(C,NA),

and (K,N) is an adjoint pair. □

Remark 6.24. In this case, since we are working with an equivalence of categories, it is
true that both (K,N) and (N,K) are adjoint pairs. We have chosen to do it this way as
the calculations turn out to be simpler.

6.3. Quillen Adjunctions. We now look at why the notion of adjunction is important.

Definition 6.25. Let C and D be model categories, and let (L,R) be a pair of adjoint
functors.

L : C D : R

(L,R) is said to be a Quillen adjunction if R preserves fibrations and trivial fibrations.

Remark 6.26. The usual definition of a Quillen adjunction, as in [Hov99] has a list
of equivalent conditions to the one in this definition. Equivalently, (L,R) is a Quillen
adjunction if:

• L preserves cofibrations and trivial cofibrations;
• L preserves cofibrations and R preserves fibrations;
• L preserves trivial cofibrations and R preserves trivial fibrations.

As these are equivalent, it suffices to prove just one of these. We have chosen to look at
fibrations and trivial fibrations, largely because the functor N is easier to work with than
the functor K.

Remark 6.27. Quillen adjunctions turn out to be a suitable notion of morphism between
model categories. We would like to form a category of model categories; however, we
cannot due to set theoretic issues [Hov99]. We instead form what is known as a 2-category1

of model categories, which has the extra structure of natural transformations being maps
between the Quillen adjunctions.

Given a Quillen adjunction (L,R) : C → D, we can form associated functors in the
homotopy category.

1A category with a class of objects, a class of morphisms and a class of morphisms between morphisms
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Theorem 6.28. Let (L,R) : C → D be a Quillen adjunction. Then there exists functors
called the total derived functors which give an equivalence of categories between Ho(C) and
Ho(D).

Proof. For a proof and more details, the reader is referred to ([DS95], theorem 9.7). □

6.4. Quillen Equivalence.

Definition 6.29. A Quillen adjunction (L,R) : C → D is called a Quillen equivalence if
for all cofibrant objects X in C and fibrant objects Y in D, a map f : LX → Y is a weak
equivalence in D if and only if ϕ(f) : X → RY is a weak equivalence in C, where ϕ is the
isomorphism HomC(LX, Y ) ∼= HomD(X,RY ).

Example 6.30. The adjoint pair (| − |, S∗) can be extended to a Quillen adjunction,
and in fact gives a Quillen equivalence between Top and sSet. Therefore, there is an
equivalence of categories between Ho(Top) and Ho(sSet). This is proven in ([Hov99],
theorem 3.6.7 together with theorem 2.4.23), and gives a rigorous meaning to the statement
that simplicial sets are useful to understand the homotopy of topological spaces.

Remark 6.31. Since (K,N) is an adjoint pair which gives an equivalence of categories,
a Quillen equivalence between Ch+(Ab) and sAb is easy to prove: as soon as we have
a model structure on one side, we could declare the model structure on the other side
to be the images of fibrations and weak equivalences under N . This would necessarily
provide a Quillen equivalence as we have an inverse functor, showing that these things
must be preserved up to natural isomorphism. This is sometimes called the transferred
model structure, and this is how the Quillen equivalence is proven in [Qui67] and [GJ99].
In light of this, it is not the fact that there is a Quillen equivalence between these two
categories that is the particularly interesting bit; rather, it is the fact that the classical
model structure on simplicial abelian groups and the projective model structure on non-
negatively graded chain complexes correspond in this way; a Kan fibration in sAb is
homotopically equivalent to the notion of surjection in every positive degree in Ch+(Ab).

6.5. The Dold-Kan Quillen Equivalence. In this section we prove the Dold-Kan corre-
spondence extends to a Quillen equivalence. This was originally due to Quillen in [Qui67],
without much proof. A more fleshed out proof appears in [GJ99]. To prove this, we prove
that N preserves weak equivalences and fibrations; this is a slightly stricter condition that
we require, but certainly does show that N preserves fibrations and trivial fibrations and
therefore (K,N) is a Quillen adjunction.

Proposition 6.32. Let f : A → B be a weak equivalence in sAb, i.e. the induced map
π∗(f) : π∗(A) → π∗(B) is an isomorphism. Then Nf : NA → NB is a weak equivalence
in Ch+(Ab), i.e. H∗(Nf) : H∗(NA) → H∗(NB) is an isomorphism.

Proof. This follows from proposition 5.29, which states that H∗(NA) ∼= π∗(A). By think-
ing about π∗, H∗ and N as functors, this proposition says that π∗ is naturally isomorphic
to H∗N . Let f : A → B be a weak equivalence in sAb. Then, by functoriality we have
the following commutative diagram.

π∗(A) π∗(B)

H∗(NA) H∗(NB)

∼

π∗(f)

∼

H∗(Nf)

Now, since H∗(NA) ∼= π∗(A) ∼= π∗(B) ∼= H∗(NB) we must have that H∗(Nf) is an
isomorphism of homology groups, as required. □

So, N preserves weak equivalences. Furthermore, we have:
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Proposition 6.33. Let f : A → B is a Kan fibration. Then Nf : NA → NB is a
surjection in every positive degree.

Proof. Let f : A→ B be a Kan fibration. Let n ≥ 1 and consider β ∈ NBn, so ∂i(β) = 0

for 0 ≤ i ≤ n − 1. By proposition 3.17, this is the same as a simplicial map β̃ : ∆n → B
with β̃|Λn

n
= 0. This follows from the fact that Λnn =

⋃n−1
i=0 δi(∆

n) and as β̃ is a simplicial

map, it commutes with face maps, so we have β̃ ◦ δi = ∂i ◦ β̃ = ∂i(β) = 0 . Hence we have
the following commutative diagram.

Λnn A

∆n B

0

f
∃x̃

β̃

As f is a Kan fibration, there exists a lift x̃ as indicated. This has the property f ◦ x̃ = β̃,
or equivalently f(x) = β. Also x̃|Λn

n
= 0 which corresponds to x ∈ NAn. Since this

was true for arbitrary β ∈ NBn, it follows that Nfn : NAn → NBn is surjective for all
n ≥ 1. □

Therefore, N preserves fibrations.

Corollary 6.34. (K,N) is a Quillen adjunction.

Proof. This follows from the definition of Quillen adjunctions; by proposition 6.32 and
proposition 6.33, the functor N preserves fibrations and trivial fibrations. □

We now have all the ingredients we need to prove our key result.

Theorem 6.35 (The Dold-Kan Quillen equivalence). There is a Quillen equivalence be-
tween the projective model structure on Ch+(Ab) and the classical model structure on
sAb, given by (K,N).

Proof. Let C be a cofibrant object in Ch+(Ab), A be a fibrant object in sAb, and
f : KC → A be a weak equivalence in sAb. We show that Θ(f) : C → NA, is a weak
equivalence in Ch+(Ab). Recall from proposition 6.23, that we have an isomorphism(
ΦC
)−1

in Ch+(Ab). By (M1), this is a weak equivalence. By proposition 6.32, N(f) is

also a weak equivalence. Hence by the 2-out-of-3 property (M2), Θ(f) = N(f) ◦
(
ΦC
)−1

is a weak equivalence.
Hence (K,N) is a Quillen equivalence. □

7. Concluding Remarks and Further Reading

In this project, we have proven that there is a Quillen equivalence given by:

Ch+(Ab) sAb.
K

N

This allows us to think of chain complexes of abelian groups as the same objects as
simplicial abelian groups homotopically, and as a result we can calculate homotopy groups
using homology groups, which are often significantly easier to calculate. Along the way,
we have seen motivation for where these abstract ideas came from and the problems that
they were originally intended to solve. One such example has been looking at the singular
simplicial set of a topological space. We have described a translation between topology
and homological algebra:

Top sSet sAb Ch+(Ab),
S∗

|−|

Z

U N

K
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where (|− |, S∗) and (K,N) give Quillen equivalences, and (Z, U) is an adjoint pair and
therefore preserves some properties like limits and colimits [Rie17]. A longer project could
look more closely at this translation and look at examples of each it in action.

There are many generalisations of the Dold-Kan correspondence. Throughout this
project, we have used the category Ab as the basis for our tools. In fact, the desirable
properties of this category can be abstractified into what is known as an abelian category,
which gives many more uses to homological algebra, as shown in ([Wei95], 1.3). Examples
of abelian categories includeAb and the category of right R-modules for a ring R, amongst
others. For an abelian category A, we can generalise the Dold-Kan correspondence to a
Quillen equivalence between the categories Ch+(A) and sA [Wei95, GJ99]. The proof is
not too dissimilar to the one presented here; by working with R-modules we can argue in
much the same way using elements, and then we can invoke the Freyd-Mitchell Embedding
theorem (1964), which allows us to think of abelian categories as R-modules [Fre64].

There are also more structured extensions of Dold-Kan. For example in 2003, Ste-
fan Schwede and Brooke Shipley proved a monoidal version of the Dold-Kan Quillen
equivalence to show that simplicial rings, modules and algebras are Quillen equivalent to
differential graded rings, modules and algebras respectively [SS03].

An extended project could attempt to prove that there is a Quillen equivalence between
the model structure on Ch+(A) given by Christensen and Hovey in [CH02] and the effective
model structure on sA [GHSS21]. This would generalise the work in this project so that
when A = Ab, we would recover exactly the statement of theorem 6.35.

To an algebraic topologist, the Dold-Kan correspondence is an essential tool. This is
seen by its continuous use in current research papers such as [GHSS21, SC19, Wal22].
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