The elementary theory of the 2-category of small categories

Calum Hughes and Adrian Miranda

Lawvere's Elementary Theory of the Category of Sets (ETCS) \rightsquigarrow sets, functions, composition. The Elementary Theory of the 2-Category of Small Categories (ET2CSC) \rightsquigarrow categories, functors, natural transformations, composition, whiskering, vertical composition.

ETCS	Internal categories
ε ETCS if:	Let $\mathcal E$ be a category with pullbacks. A category internal to $\mathcal E$ is:
(1) 🖈 finite limits	$\xrightarrow{p_1} \xrightarrow{d_1}$
😞 cartesian closed	$\dots \longrightarrow C_1 \times_{C_0} C_1 \xrightarrow{m} C_1 \xleftarrow{i} C_0$
(2) subobject classifier	$\stackrel{\circ}{\longrightarrow} \xrightarrow{p_2} \stackrel{\rightarrow}{\longrightarrow} \xrightarrow{d_0}$
(3) well-pointed	where $C_0, C_1 \in \mathcal{E}$.
(4) natural numbers object	$\mathbf{O} = \mathbf{I}$

(4) natural numbers object(5) axiom of choice

(1) Bourke's Theorem:

If \mathcal{E} is a category with pullbacks then the 2-category $\mathcal{K} := \operatorname{Cat}(\mathcal{E})$ satisfies Bourke's exactness axioms. Conversely, if \mathcal{K} satisfies Bourke's exactness axioms, then there is a 2-equivalence $\mathcal{K} \simeq \operatorname{Cat}(\mathcal{E})$ where $\mathcal{E} := \operatorname{Disc}(\mathcal{K})$.

This characterises 2-categories \mathcal{K} which are of the form

 \rightsquigarrow 2-category $Cat(\mathcal{E})$.

A 2-category K ⊨ ET2CSC if:

(1) Bourke's axioms

- ☆ terminal object
- cartesian closed
- (2) full subobject classifier
 (2) 2-well-pointed

(3) 2-well-pointed(4) 2-natural numbers

(3) 2-well-pointedness:

1. \mathcal{K} has a terminal object **1**.

2. The copower $2 \odot \underline{1}$ exists in \mathcal{K} .

3. The family containing just $2 \odot \underline{1}$ is a generator for the 2-category \mathcal{K} .

 $\mathbf{2} \xrightarrow{\forall f} \mathcal{A} \xrightarrow{F}_{G} \mathcal{B}$

(4) 2-natural numbers object:

(2) Full subobject classifier:

a full monomorphism $\top : \mathbf{1} \rightarrow \Omega$ such that:

object (5) categorified axiom of choice

(5) The categorified axiom of choice:

Any acute fully faithful morphism has a section.

Acute := $^{\pitchfork}$ (FullMono) In Cat(\mathcal{E}), these are epi-on-objects.

$\underline{\mathbf{1}} \xrightarrow{z} \underline{N} \xrightarrow{s} \underline{N}$

that is a natural numbers object for the underlying 1-category of \mathcal{K} and:

Main Theorem

2-Categories of Categories

1. Let \mathcal{E} be a category. Then $\mathcal{E} \models \text{ETCS}$ if and only if $\text{Cat}(\mathcal{E}) \models \text{ET2CSC}$, and in this case $\mathcal{E} \simeq \text{Disc}(\text{Cat}(\mathcal{E}))$.

2. Let \mathcal{K} be a 2-category. Then $\mathcal{K} \models \text{ET2CSC}$ if and only if **Disc** $(\mathcal{K}) \models \text{ETCS}$, and in this case $\mathcal{K} \simeq \text{Cat}(\text{Disc}(\mathcal{K}))$.

3. This extends to a biequivalence

$$\underbrace{\text{ETCS}}_{\text{Cat}(-)} \xleftarrow{\text{Disc}(-)} \text{ET2CSC}$$

By considering a 2-category \mathcal{K} equipped with a discrete opfibration classifier $p: S_* \rightarrow S$, we define the notion of a 2-category of categories. This models the situation:

 $Cat \hookrightarrow CAT$

adding the axiom of replacement.

The University of Manchester

